精英家教网 > 高中数学 > 题目详情
17.设双曲线$\frac{x^2}{a}+\frac{y^2}{9}$=1的渐近线方程为3x±2y=0,则a的值为(  )
A.-4B.-3C.2D.1

分析 利用双曲线的渐近线方程求解即可.

解答 解:双曲线$\frac{x^2}{a}+\frac{y^2}{9}$=1,可得a<1,双曲线的渐近线方程为3x±2y=0,
可得$\sqrt{-a}$=2,解得a=-4.
故选:A.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.抛物线x2=4y的焦点为F,过点(0,-1)作直线交抛物线于不同两点A,B,以AF,BF为邻边作平行四边形FARB,求顶点R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设m,n是两条不同的直线,α,β是两个不同的平面,下列说法正确的是(  )
A.若m∥α,α∩β=n,则 m∥nB.若m∥α,m⊥n,则n⊥α
C.若m⊥α,n⊥α,则m∥nD.若m?α,n?β,α⊥β,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直三棱柱ABC-A1B1C1中,D,E分别是BC,A1B1的中点.
(1)求证:DE∥平面ACC1A1
(2)设M为AB上一点,且AM=$\frac{1}{4}$AB,若直三棱柱ABC-A1B1C1的所有棱长均相等,求直线DE与直线A1M所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若$x∈({e,{e^2}}),a=lnx,b={({\frac{1}{2}})^{lnx}},c={e^{lnx}}$,则a,b,c的大小关系为(  )
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$tanθ=-\frac{1}{3},θ∈(\frac{π}{2},π),则cos2θ$=(  )
A.$-\frac{4}{5}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如右图所示.已知电商为下一个销售季度筹备了130吨该商品.现以x(单位:吨,100≤x≤150)表示下一个销售季度的市场需求量,T(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
(Ⅰ)视x分布在各区间内的频率为相应的概率,求P(x≥120)
(Ⅱ)将T表示为x的函数,求出该函数表达式;
(Ⅲ)在频率分布直方图的市场需求量分组中,以各组的区间中点值(组中值)代表该组的各个值,并以市场需求量落入该区间的频率作为市场需求量取该组中值的概率(例如x∈[100,110),则取x=105,且x=105的概率等于市场需求量落入100,110)的频率),求T的分布列及数学期望E(T).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-2ax+2(a∈R).
(1)若a=1时,求函数f(x)在x∈[-1,2]上的最大值;
(2)当x∈[-1,+∞)时,f(x)≥a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{y^2}{4}-{x^2}=1$的两条渐近线分别与抛物线y2=2px(p>0)的准线交于A,B两点,O为坐标原点,若△OAB的面积为1,则p的值为(  )
A.1B.$\sqrt{2}$C.$2\sqrt{2}$D.4

查看答案和解析>>

同步练习册答案