精英家教网 > 高中数学 > 题目详情
11.不等式|3x-1|<1的解集为(  )
A.RB.{x|x<0或x>$\frac{2}{3}$}C.{x|-$\frac{1}{3}$$<x<\frac{1}{2}$}D.{x|0$<x<\frac{2}{3}$}

分析 由不等式可得-1<3x-1<1,哟此求得x的范围.

解答 解:由不等式|3x-1|<1,可得-1<3x-1<1,求得0<x<$\frac{2}{3}$,
故选:D.

点评 本题主要考查绝对值不等式的解法,体现了等价转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.对于平面α和共面的直线m、n,下列命题中真命题是③(填序号).
①若m⊥α,m⊥n,则n∥α;
②若m∥α,n∥α,则m∥n;
③若m?α,n∥α,则m∥n;
④若m、n与α所成的角相等,则m∥n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)设U=R,A={x|(x-2)(x+3)≥0},B={x|2x+1≥0},求(∁UA)∩B;
(2)已知A={x|x2+ax+b=0},B={x|x2+cx+15=0},A∪B={3,5},A∩B={3},求a+b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}为等差数列,其前n项和为Sn,a1+a2=3,a2+a3=6,若对任意n∈N*,求S9的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线l经过点P(-1,7),与圆C:x2+(y-4)2=5相交得弦AB,若弦AB是该圆中经过点P的所有弦中最长的弦,则直线l的方程为3x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$,若关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,则b+c值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知圆M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别与圆M切于点AB.
(1)若|AB|=$\frac{4\sqrt{2}}{3}$,求直线MQ的方程;
(2)若Q点的坐标为(-2,0),求:
①△AQB外接圆的方程;
②直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有(  )种.
A.20B.24.C.36D.54

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.用适当的区间表示下面的集合,并将其填入空格中:
(1){x|3<x<9} 可以写成(3,9);
(2){x|1≤x<5}可以写成[1,5);
(3){x|x≤-1} 可以写成(-∞,-1];
(4){x|x>5} 可以写成(5,+∞).

查看答案和解析>>

同步练习册答案