【题目】如图,在四棱锥中,底面是平行四边形,且,,平面平面.
(1)求证:;
(2)若底面是边长为2的菱形,四棱锥的体积为,求点到平面的距离.
科目:高中数学 来源: 题型:
【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.
(1)请根据直方图中的数据填写下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取8人,再从这8名学生中随机抽取3人参加体育知识问卷调查,记“课外体育不达标”的人数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,其中.
(Ⅰ) 判断函数在上的单调性;
(Ⅱ) 设函数的定义域为,且有极值点.
(ⅰ) 试判断当时, 是否满足题目的条件,并说明理由;
(ⅱ) 设函数的极小值点为,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰直角三角形中,,,、分别是,上的点,,为的中点,将沿折起,得到如图2所示的四棱锥,其中.
(1)证明:平面;
(2)求二面角的平面角的余弦值;
(3)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于,两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某市夏季某一天的温度变化曲线,若该曲线近似地满足函数,则下列说法正确的是( )
A.该函数的周期是
B.该函数图象的一条对称轴是直线
C.该函数的解析式是
D.该市这一天中午时天气的温度大约是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com