精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的内角ABC所对的边分别为abc,下列四个命题中不正确的命题是( )

A.,则△ABC一定是等边三角形

B.,则△ABC一定是锐角三角形

C.,则△ABC一定是等腰三角形

D.,则△ABC一定是等腰三角形或直角三角形

【答案】B

【解析】

利用正弦定理和余弦定理逐个进行分析可得.

对于,由正弦定理得,,

为三角形的内角,所以,所以,

选项正确;

对于,由余弦定理得,,所以,只能说明为锐角.有可能为钝角,

故选项是错误的;

对于,由正弦定理得,,,

,再由正弦定理得,,,所以 ABC一定是等腰三角形,

故选项正确;

对于选项,由余弦定理可得,,

,得,

,得,

,所以△ABC是等腰三角形或直角三角形.

故选项是正确的.

故选.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用分别表示乌龟和兔子所行的路程,为时间,则与故事情节相吻合的是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 部分图象如图所示.
(Ⅰ)求φ值及图中x0的值;
(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知 ,f(C)=﹣2,sinB=2sinA,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求:

(1)3个全是红球的概率. (2)3个颜色全相同的概率.

(3)3个颜色不全相同的概率. (4)3个颜色全不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中 .

(1)当 时,求函数 处的切线方程;

(2)若函数 在定义域上有且仅有一个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交C于A,B两点,交x轴于点D,B到x轴的距离比|BF|小1.
(Ⅰ)求C的方程;
(Ⅱ)若SBOF=SAOD , 求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,APB的面积为y,yx之间的函数关系式用如图所示的程序框图给出.

(1)写出程序框图中①,,③处应填充的式子.

(2)若输出的面积y值为6,则路程x的值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(﹣1,0),B(1,0), = + ,| |+| |=4
(1)求P的轨迹E
(2)过轨迹E上任意一点P作圆O:x2+y2=3的切线l1 , l2 , 设直线OP,l1 , l2的斜率分别是k0 , k1 , k2 , 试问在三个斜率都存在且不为0的条件下, + )是否是定值,请说明理由,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若 R),求证: a∈R,且a≠0成立.

查看答案和解析>>

同步练习册答案