·ÖÎö £¨I£©¸ù¾ÝÌâÒ⣬ÉèP£¨x0£¬y0£©£¬Q£¨-x0£¬-y0£©£¬ÓÉPÔÚÍÖÔ²ÉÏ£¬Ôò${y}_{0}^{2}$=$\frac{{b}^{2}}{{a}^{2}}$£¨a2-${x}_{0}^{2}$£©£¬kPA•kQA=$\frac{{y}_{0}}{{x}_{0}-a}$•$\frac{{y}_{0}}{{x}_{0}+a}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-{a}^{2}}$=-$\frac{{b}^{2}}{{a}^{2}}$=-$\frac{3}{4}$£¬c=1£¬¼´¿ÉÇóµÃÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨II£©ÉèÖ±ÏßMNµÄ·½³ÌΪx=my+1£¬´úÈëÍÖÔ²·½³Ì£¬ÓÖÖ±ÏßMAµÄ·½³ÌΪy=$\frac{{y}_{1}}{{x}_{1}-2}$£¨x-2£©£¬½«x=3´úÈ룬yC=$\frac{{y}_{1}}{{x}_{1}-2}$=$\frac{{y}_{1}}{m{y}_{1}-1}$£¬Í¬ÀíyD=$\frac{{y}_{2}}{m{y}_{2}-1}$£¬S1=$\frac{1}{2}$ØCDØ=$\frac{3}{2}$$\sqrt{{m}^{2}+1}$£¬S2=$\frac{1}{2}$•ØAFØ•Øy1-y2Ø=$\frac{6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$£¬2S1-S2=3$\sqrt{{m}^{2}+1}$-$\frac{6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$£¬Áî$\sqrt{{m}^{2}+1}$=t£¨t¡Ý1£©£¬Ôòm2=t2-1£¬2S1-S2=3t-$\frac{6t}{3{t}^{2}+1}$£¬Óɺ¯Êýµ¥µ÷µÝÔö£¬µ±t=1ʱ£¬È¡×îСֵ£¬¼´¿ÉÇóµÃ2S1-S2µÄ×îСֵΪ$\frac{3}{2}$£®
½â´ð ½â£º£¨I£©ÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ½¹¾àΪ2£¬ÍÖÔ²µÄ½¹µãÔÚxÖáÉÏ£¬2c=2£¬c=1£¬
¸ù¾ÝÌâÒ⣬ÉèP£¨x0£¬y0£©£¬Q£¨-x0£¬-y0£©£¬
ÓÉPÔÚÍÖÔ²ÉÏ£¬Ôò${y}_{0}^{2}$=$\frac{{b}^{2}}{{a}^{2}}$£¨a2-${x}_{0}^{2}$£©£¬
Ö±ÏßB1AµÄбÂÊÓëÖ±ÏßB2AµÄбÂÊÖ®»ý£ºkPA•kQA=$\frac{{y}_{0}}{{x}_{0}-a}$•$\frac{{y}_{0}}{{x}_{0}+a}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-{a}^{2}}$=-$\frac{{b}^{2}}{{a}^{2}}$£¬
ÒÀÌâÒâÓÐ$\frac{{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$£¬
ÓÖc=1£¬
¡àa2=4£¬b2=3£¬
¹ÊÍÖÔ²EµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨II£©ÉèÖ±ÏßMNµÄ·½³ÌΪx=my+1£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÕûÀíµÃ£¨3m2+4£©y2+6my-9=0£¬
ÓÉΤ´ï¶¨ÀíÖª£ºy1+y2=-$\frac{6m}{3{m}^{2}+4}$£¬y1•y2=-$\frac{9}{3{m}^{2}+4}$£¬
ÓÖÖ±ÏßMAµÄ·½³ÌΪy=$\frac{{y}_{1}}{{x}_{1}-2}$£¨x-2£©£¬½«x=3´úÈ룬
µÃyC=$\frac{{y}_{1}}{{x}_{1}-2}$=$\frac{{y}_{1}}{m{y}_{1}-1}$£¬Í¬ÀíyD=$\frac{{y}_{2}}{m{y}_{2}-1}$£¬
¡àØCDØ=ØyC-yDØ=$\frac{Ø{y}_{1}-{y}_{2}Ø}{{m}^{2}{y}_{1}{y}_{2}-m£¨{y}_{1}+{y}_{2}£©+1}$=3$\sqrt{{m}^{2}+1}$£¬
¡àS1=$\frac{1}{2}$ØCDØ=$\frac{3}{2}$$\sqrt{{m}^{2}+1}$£¬S2=$\frac{1}{2}$•ØAFØ•Øy1-y2Ø=$\frac{6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$£¬
Ôò2S1-S2=3$\sqrt{{m}^{2}+1}$-$\frac{6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$£¬
Áî$\sqrt{{m}^{2}+1}$=t£¨t¡Ý1£©£¬Ôòm2=t2-1£¬
2S1-S2=3t-$\frac{6t}{3{t}^{2}+1}$£¬
¼Çf£¨t£©=3t-$\frac{6t}{3{t}^{2}+1}$£¬Ôòf¡ä£¨t£©=3+$\frac{6£¨3{t}^{2}-1£©}{£¨3{t}^{2}+1£©^{2}}$£¾0£¬
¡àf£¨t£©ÔÚ[1£¬+¡Þ£©µ¥µ÷µÝÔö£¬´Ó¶øf£¨t£©µÄ×îСֵΪf£¨1£©=$\frac{3}{2}$£¬
¹Ê2S1-S2µÄ×îСֵΪ$\frac{3}{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½¼°Èý½ÇÐεÄÃæ»ý¹«Ê½µÄÓ¦Ó㬿¼²éÔ²×¶ÇúÏßÓëµ¼ÊýµÄ×ÛºÏÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| X | 1 | 2 | 3 |
| P | 0.5 | x | y |
| A£® | $\frac{7}{32}$ | B£® | $\frac{9}{32}$ | C£® | $\frac{33}{64}$ | D£® | $\frac{55}{64}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-1£¬2£© | B£® | [-1£¬2£© | C£® | £¨-¡Þ£¬-1] | D£® | {-1} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | 4 | C£® | 6 | D£® | 12 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com