1£®£¨Àí¿Æ£©ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ½¹¾àΪ2£¬AÊÇEµÄÓÒ¶¥µã£¬B1¡¢B2ÊÇEµÄ¶ÌÖáÁ½¶¥µã£¬ÇÒÖ±ÏßB1AµÄбÂÊÓëÖ±ÏßB2AµÄбÂÊÖ®»ýΪ-$\frac{3}{4}$£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©¹ýEµÄÓÒ½¹µãF2×÷Ö±ÏßÓëE½»ÓÚM¡¢NÁ½µã£¬Ö±ÏßMA¡¢NAÓëÖ±ÏßX=3·Ö±ð½»ÓÚC¡¢DÁ½µã£¬Éè¡÷ACDÓë¡÷AMNµÄÃæ»ý·Ö±ð¼ÇΪS1¡¢S2£¬Çó2S1-S2µÄ×îСֵ£®

·ÖÎö £¨I£©¸ù¾ÝÌâÒ⣬ÉèP£¨x0£¬y0£©£¬Q£¨-x0£¬-y0£©£¬ÓÉPÔÚÍÖÔ²ÉÏ£¬Ôò${y}_{0}^{2}$=$\frac{{b}^{2}}{{a}^{2}}$£¨a2-${x}_{0}^{2}$£©£¬kPA•kQA=$\frac{{y}_{0}}{{x}_{0}-a}$•$\frac{{y}_{0}}{{x}_{0}+a}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-{a}^{2}}$=-$\frac{{b}^{2}}{{a}^{2}}$=-$\frac{3}{4}$£¬c=1£¬¼´¿ÉÇóµÃÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨II£©ÉèÖ±ÏßMNµÄ·½³ÌΪx=my+1£¬´úÈëÍÖÔ²·½³Ì£¬ÓÖÖ±ÏßMAµÄ·½³ÌΪy=$\frac{{y}_{1}}{{x}_{1}-2}$£¨x-2£©£¬½«x=3´úÈ룬yC=$\frac{{y}_{1}}{{x}_{1}-2}$=$\frac{{y}_{1}}{m{y}_{1}-1}$£¬Í¬ÀíyD=$\frac{{y}_{2}}{m{y}_{2}-1}$£¬S1=$\frac{1}{2}$Ø­CDØ­=$\frac{3}{2}$$\sqrt{{m}^{2}+1}$£¬S2=$\frac{1}{2}$•Ø­AFØ­•Ø­y1-y2Ø­=$\frac{6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$£¬2S1-S2=3$\sqrt{{m}^{2}+1}$-$\frac{6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$£¬Áî$\sqrt{{m}^{2}+1}$=t£¨t¡Ý1£©£¬Ôòm2=t2-1£¬2S1-S2=3t-$\frac{6t}{3{t}^{2}+1}$£¬Óɺ¯Êýµ¥µ÷µÝÔö£¬µ±t=1ʱ£¬È¡×îСֵ£¬¼´¿ÉÇóµÃ2S1-S2µÄ×îСֵΪ$\frac{3}{2}$£®

½â´ð ½â£º£¨I£©ÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ½¹¾àΪ2£¬ÍÖÔ²µÄ½¹µãÔÚxÖáÉÏ£¬2c=2£¬c=1£¬
¸ù¾ÝÌâÒ⣬ÉèP£¨x0£¬y0£©£¬Q£¨-x0£¬-y0£©£¬
ÓÉPÔÚÍÖÔ²ÉÏ£¬Ôò${y}_{0}^{2}$=$\frac{{b}^{2}}{{a}^{2}}$£¨a2-${x}_{0}^{2}$£©£¬
Ö±ÏßB1AµÄбÂÊÓëÖ±ÏßB2AµÄбÂÊÖ®»ý£ºkPA•kQA=$\frac{{y}_{0}}{{x}_{0}-a}$•$\frac{{y}_{0}}{{x}_{0}+a}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-{a}^{2}}$=-$\frac{{b}^{2}}{{a}^{2}}$£¬
ÒÀÌâÒâÓÐ$\frac{{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$£¬
ÓÖc=1£¬
¡àa2=4£¬b2=3£¬
¹ÊÍÖÔ²EµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨II£©ÉèÖ±ÏßMNµÄ·½³ÌΪx=my+1£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÕûÀíµÃ£¨3m2+4£©y2+6my-9=0£¬
ÓÉΤ´ï¶¨ÀíÖª£ºy1+y2=-$\frac{6m}{3{m}^{2}+4}$£¬y1•y2=-$\frac{9}{3{m}^{2}+4}$£¬
ÓÖÖ±ÏßMAµÄ·½³ÌΪy=$\frac{{y}_{1}}{{x}_{1}-2}$£¨x-2£©£¬½«x=3´úÈ룬
µÃyC=$\frac{{y}_{1}}{{x}_{1}-2}$=$\frac{{y}_{1}}{m{y}_{1}-1}$£¬Í¬ÀíyD=$\frac{{y}_{2}}{m{y}_{2}-1}$£¬
¡àØ­CDØ­=Ø­yC-yDØ­=$\frac{Ø­{y}_{1}-{y}_{2}Ø­}{{m}^{2}{y}_{1}{y}_{2}-m£¨{y}_{1}+{y}_{2}£©+1}$=3$\sqrt{{m}^{2}+1}$£¬
¡àS1=$\frac{1}{2}$Ø­CDØ­=$\frac{3}{2}$$\sqrt{{m}^{2}+1}$£¬S2=$\frac{1}{2}$•Ø­AFØ­•Ø­y1-y2Ø­=$\frac{6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$£¬
Ôò2S1-S2=3$\sqrt{{m}^{2}+1}$-$\frac{6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$£¬
Áî$\sqrt{{m}^{2}+1}$=t£¨t¡Ý1£©£¬Ôòm2=t2-1£¬
2S1-S2=3t-$\frac{6t}{3{t}^{2}+1}$£¬
¼Çf£¨t£©=3t-$\frac{6t}{3{t}^{2}+1}$£¬Ôòf¡ä£¨t£©=3+$\frac{6£¨3{t}^{2}-1£©}{£¨3{t}^{2}+1£©^{2}}$£¾0£¬
¡àf£¨t£©ÔÚ[1£¬+¡Þ£©µ¥µ÷µÝÔö£¬´Ó¶øf£¨t£©µÄ×îСֵΪf£¨1£©=$\frac{3}{2}$£¬
¹Ê2S1-S2µÄ×îСֵΪ$\frac{3}{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½¼°Èý½ÇÐεÄÃæ»ý¹«Ê½µÄÓ¦Ó㬿¼²éÔ²×¶ÇúÏßÓëµ¼ÊýµÄ×ÛºÏÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÏòÁ¿$\overrightarrow m$=£¨cosx£¬-1£©£¬$\overrightarrow n$=£¨$\sqrt{3}$sinx£¬-$\frac{1}{2}$£©£¬É躯Êýf£¨x£©=£¨$\overrightarrow m$+$\overrightarrow n$£©•$\overrightarrow m$£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©µ±x¡Ê[0£¬$\frac{¦Ð}{2}$]ʱ£¬Çóf£¨x£©µÄ×î´óÖµ£¬²¢Ö¸³ö´ËʱxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ëæ»ú±äÁ¿XµÄ·Ö²¼ÁÐÈçÏ£ºÈôE£¨X£©=$\frac{15}{8}$£¬ÔòD£¨X£©µÈÓÚ£¨¡¡¡¡£©
X123
P0.5xy
A£®$\frac{7}{32}$B£®$\frac{9}{32}$C£®$\frac{33}{64}$D£®$\frac{55}{64}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=$\left\{{\begin{array}{l}{£¨2-a£©x+3a£¬x£¼1}\\{{{log}_2}x£¬x¡Ý1}\end{array}}\right.$µÄÖµÓòΪR£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬2£©B£®[-1£¬2£©C£®£¨-¡Þ£¬-1]D£®{-1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÈôÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ60¡ã£¬|$\overrightarrow{b}$|=4£¬£¨$\overrightarrow{a}$+2$\overrightarrow{b}$£©•£¨$\overrightarrow{a}$-3$\overrightarrow{b}$£©=-72£¬ÔòÏòÁ¿$\overrightarrow{a}$µÄģΪ£¨¡¡¡¡£©
A£®2B£®4C£®6D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¸ø¶¨ÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬³ÆÔ²x2+y2=a2+b2ΪÍÖÔ²EµÄ¡°°éËæÔ²¡±£®
ÒÑÖªÍÖÔ²EÖÐb=1£¬ÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÍÖÔ²E½»ÓÚA£¬BÁ½µã£¬ÓëÆä¡°°éËæÔ²¡±½»ÓÚC£¬DÁ½µã£¬µ±|CD|=$\sqrt{13}$ʱ£¬ÇóÏÒ³¤|AB|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚµ×ÃæÎªÖ±½ÇÌÝÐεÄËÄÀâ×¶P-ABCDÖУ¬AD¡ÎBC£¬¡ÏABC=90¡ã£¬PA¡ÍÆ½ÃæABCD£¬PA=3£¬AD=2£¬AB=2$\sqrt{3}$£¬BC=6£®
£¨1£©ÇóÖ¤£ºBD¡ÍÆ½ÃæPAC£»
£¨2£©ÇóÆ½ÃæPBDÓëÆ½ÃæBDAµÄ¼Ð½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬¡ÏBAD=90¡ã£¬AD¡ÎBC£¬AB=2£¬AD=$\frac{3}{2}$£¬BC=$\frac{1}{2}$£¬ÍÖÔ²ÒÔA¡¢BΪ½¹µãÇÒ¾­¹ýµãD£®
£¨¢ñ£©½¨Á¢Êʵ±µÄÖ±½Ç×ø±êϵ£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôµãEÂú×ã$\overrightarrow{EC}$=$\frac{1}{2}$$\overrightarrow{AB}$£¬ÎÊÊÇ·ñ´æÔÚÖ±ÏßlÓëÍÖÔ²½»ÓÚM¡¢NÁ½µã£¬ÇÒ|ME|=|NE|£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlÓëAB¼Ð½Ç¦ÈµÄÕýÇÐÖµµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÖ±ÏßlÓëÔ²C£ºx2+y2+2x-4y+a=0ÏཻÓÚA£¬BÁ½µã£¬ÏÒABµÄÖеãΪM£¨0£¬1£©£®
£¨1£©ÇóʵÊýaµÄȡֵ·¶Î§ÒÔ¼°Ö±ÏßlµÄ·½³Ì£»
£¨2£©ÈôÒÔ$\overrightarrow{AB}$Ϊֱ¾¶µÄÔ²¹ýÔ­µãO£¬ÇóÔ²CµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸