精英家教网 > 高中数学 > 题目详情
16.若向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{b}$|=4,($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-3$\overrightarrow{b}$)=-72,则向量$\overrightarrow{a}$的模为(  )
A.2B.4C.6D.12

分析 根据平面向量数量积与夹角、模长的关系计算($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-3$\overrightarrow{b}$)=-72,即可求出$\overrightarrow{a}$的模长.

解答 解:向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{b}$|=4,
且($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-3$\overrightarrow{b}$)=|$\overrightarrow{a}$|2-|$\overrightarrow{a}$||$\overrightarrow{b}$|cos60°-6|$\overrightarrow{b}$|2
=|$\overrightarrow{a}$|2-2|$\overrightarrow{a}$|-96
=-72,
∴|$\overrightarrow{a}$|2-2|$\overrightarrow{a}$|-24=0,
即(|$\overrightarrow{a}$|-6)•(|$\overrightarrow{a}$|+4)=0;
解得|$\overrightarrow{a}$|=6,
∴向量$\overrightarrow{a}$的模为6.
故选:C.

点评 本题考查了平面向量数量积与夹角、模长的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知曲线C:ρ=$\frac{2}{1-sinθ}$,直线l:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$ (t为参数,0≤α<π).
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于A、B两点(A在第一象限),当$\overrightarrow{OA}$+3$\overrightarrow{OB}$=$\overrightarrow{0}$时,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.证明不等式:a,b,c∈R,a4+b4+c4≥abc(a+b+c).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在向南方雪灾受灾地区的捐款活动中,某慈善组织收到一笔10000元的匿名捐款,该组织经过调查,发现是甲、乙、丙、丁四个人当中的某一个捐的.慈善组织成员对他们进行求证时,发现他们的说法互相矛盾.
甲说:对不起,这钱不是我捐的
乙说:我估计这钱肯定是丁捐的
丙说:乙的收入最高,肯定是乙捐的
丁说:乙的说法没有任何根据
假定四人中只有一个说了真话,那么真正的捐款者是甲(仅一人).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知PA垂直于以AB为直径的ΘO所在的平面,C是ΘO上异于A,B的动点,PA=1,AB=2,当三棱锥P-ABC取得最大体积时,求:
(1)PC与AB所成角的大小;
(2)PA与面PCB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(理科)已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,A是E的右顶点,B1、B2是E的短轴两顶点,且直线B1A的斜率与直线B2A的斜率之积为-$\frac{3}{4}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过E的右焦点F2作直线与E交于M、N两点,直线MA、NA与直线X=3分别交于C、D两点,设△ACD与△AMN的面积分别记为S1、S2,求2S1-S2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算C${\;}_{n}^{1}$+2•C${\;}_{n}^{2}$2+…+n•C${\;}_{n}^{n}$2n-1=n(1+2)n-1,可以采用以下方法:
构造恒等式:C${\;}_{n}^{0}$+C${\;}_{n}^{1}$2x+C${\;}_{n}^{2}$22x2+…+C${\;}_{n}^{n}$2nxn=(1+2x)n
两边对x导,得C${\;}_{n}^{1}$2+2•C${\;}_{n}^{2}$22x+••+n•C${\;}_{n}^{n}$2nxn-1=2n(1+2x)n-1
在上式中令x=1,得C${\;}_{n}^{1}$+2•C${\;}_{n}^{2}$2+…+n•C${\;}_{n}^{n}$2n-1=n(1+2)n-1=n•3n-1
类比上述计算方法,计算C${\;}_{n}^{1}$2+22C${\;}_{n}^{2}$22+32C${\;}_{n}^{3}$23+…+n2C${\;}_{n}^{n}$2n=2n(2n+1)3n-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.
(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)求二面角P-AC-E的余弦值;
(Ⅲ)求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直线AM与直线PC所成的角为45°,又AC=1,BC=2PM=2,∠ACB=90°.
(1)求证:AC⊥BM;
(Ⅱ)求二面角M-AB-C的余弦值.

查看答案和解析>>

同步练习册答案