分析 分别以-x,$\frac{1}{x}$,代入f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$,即可证明结论.
解答 证明:(1)∵f(-x)=$\frac{1+(-x)^{2}}{1-(-x)^{2}}$=$\frac{1+{x}^{2}}{1-{x}^{2}}$=f(x),
∴f(-x)=f(x);
(2)f($\frac{1}{x}$)=$\frac{1+\frac{1}{{x}^{2}}}{1-\frac{1}{{x}^{2}}}$=$\frac{{x}^{2}+1}{{x}^{2}-1}$=-f(x)(x≠0),
∴f($\frac{1}{x}$)=-f(x)(x≠0).
点评 本题考查函数解析式的运用,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{2}$,$\frac{1}{2}$] | B. | [0,$\frac{1}{2}$] | C. | [0,1] | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com