分析 利用补集性质得$[\begin{array}{l}{x}&{3}\\{4}&{-2}\end{array}]$=$[\begin{array}{l}{1}&{y}\\{z}&{-2}\end{array}]$,且$[\begin{array}{l}{1}&{tanα}\\{sinβ}&{-2}\end{array}]$=$[\begin{array}{l}{1}&{1}\\{-\frac{1}{2}}&{-2}\end{array}]$,再由二阶矩阵的性质能求出x,y,z,α,β的值.
解答 解:∵全集A={$[\begin{array}{l}{x}&{3}\\{4}&{-2}\end{array}]$,$[\begin{array}{l}{1}&{tanα}\\{sinβ}&{-2}\end{array}]$},B={$[\begin{array}{l}{1}&{y}\\{z}&{-2}\end{array}]$},且∁AB={$[\begin{array}{l}{1}&{1}\\{-\frac{1}{2}}&{-2}\end{array}]$},
∴$[\begin{array}{l}{x}&{3}\\{4}&{-2}\end{array}]$=$[\begin{array}{l}{1}&{y}\\{z}&{-2}\end{array}]$,且$[\begin{array}{l}{1}&{tanα}\\{sinβ}&{-2}\end{array}]$=$[\begin{array}{l}{1}&{1}\\{-\frac{1}{2}}&{-2}\end{array}]$,
∴$\left\{\begin{array}{l}{x=1}\\{y=3}\\{z=4}\end{array}\right.$,且$\left\{\begin{array}{l}{tanα=1}\\{sinβ=-\frac{1}{2}}\end{array}\right.$,
∴x=1,y=3,z=4,α=$\frac{π}{4}$+kπ,k∈Z,β=$\frac{7π}{6}+2kπ$或$β=\frac{11π}{6}+2kπ$,k∈Z.
点评 本题考查满足条件的实数值的求法,是基础题,解题时要认真审题,注意补集性质和二阶矩阵的性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}<m≤\frac{3}{4}$ | B. | $\frac{3}{4}<m≤\frac{4}{5}$ | C. | $\frac{2}{3}<m<\frac{3}{4}$ | D. | $\frac{3}{4}<m<\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | (0,1) | C. | (1,10) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com