分析 取CC1中点F,连接D1F,B1F,则BE∥D1F,故∠B1D1F为异面直线BE与B1D1所成的角.在△B1D1F中求出三边长,利用余弦定理或等腰三角形知识求出cos∠B1D1F,四面体B-EB1D1的体积等于三棱锥D1-BB1E的体积.
解答
解:取CC1中点F,连接D1F,B1F,则BE$\stackrel{∥}{=}$D1F,
∴∠B1D1F为异面直线BE与B1D1所成的角.
设正方体棱长为1,则B1D1=$\sqrt{2}$,B1F=D1F=$\sqrt{1+\frac{1}{4}}$=$\frac{\sqrt{5}}{2}$.
∴cos∠B1D1F=$\frac{\frac{1}{2}{B}_{1}{D}_{1}}{{D}_{1}F}$=$\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{5}}{2}}=\frac{\sqrt{10}}{5}$.
V${\;}_{B-E{B}_{1}{D}_{1}}$=V${\;}_{{D}_{1}-B{B}_{1}E}$=$\frac{1}{3}{S}_{△B{B}_{1}E}•{A}_{1}{D}_{1}$=$\frac{1}{3}×\frac{1}{2}×1×1×1$=$\frac{1}{6}$.
故答案为:$\frac{\sqrt{10}}{5}$,$\frac{1}{6}$.
点评 本题考查了正方体的结构特征,空间角的计算,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{2}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | B. | $({-∞,-\frac{{\sqrt{3}}}{3}})∪({\frac{{\sqrt{3}}}{3},+∞})$ | C. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | D. | $({-∞,-\frac{{\sqrt{3}}}{3}]∪[\frac{{\sqrt{3}}}{3},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{\frac{11}{3}}$-$\frac{{y}^{2}}{11}$=1 | B. | $\frac{{x}^{2}}{2}$-y2=1 | C. | $\frac{{y}^{2}}{\frac{11}{3}}$-$\frac{{x}^{2}}{11}$=1 | D. | $\frac{{y}^{2}}{11}$-$\frac{{x}^{2}}{\frac{11}{3}}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$±\frac{1}{2}x$ | B. | y=±x | C. | y=±2x | D. | y=±$\sqrt{2}x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com