精英家教网 > 高中数学 > 题目详情
1.过原点的直线l与双曲线$\frac{x^2}{9}-\frac{y^2}{3}=-1$有两个交点,则直线l的斜率的取值范围是(  )
A.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$B.$({-∞,-\frac{{\sqrt{3}}}{3}})∪({\frac{{\sqrt{3}}}{3},+∞})$C.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$D.$({-∞,-\frac{{\sqrt{3}}}{3}]∪[\frac{{\sqrt{3}}}{3},+∞})$

分析 设过原点的直线方程为y=kx,与双曲方程联立,得:x2(3k2-1)-9=0,因为直线与双曲有两个交点,所以△=36(3k2-1)>0,由此能求出k的范围.

解答 解:双曲线$\frac{x^2}{9}-\frac{y^2}{3}=-1$,即为$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{9}$=1,
设过原点的直线方程为y=kx,
与双曲方程联立$\left\{\begin{array}{l}{y=kx}\\{3{y}^{2}-{x}^{2}=9}\end{array}\right.$,
得:x2(3k2-1)-9=0,
因为直线与双曲有两个交点,所以△=36(3k2-1)>0,
∴k2>$\frac{1}{3}$,
解得k>$\frac{\sqrt{3}}{3}$,或k<-$\frac{\sqrt{3}}{3}$.
故选:B.

点评 本题考查直线和双曲线的位置关系,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.二次曲线$\left\{{\begin{array}{l}{x=5cosθ}\\{y=3sinθ}\end{array}}\right.$(θ是参数)的左焦点的坐标是(-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.根据下列条件求方程.
(1)若抛物线y2=2px的焦点与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的右焦点重合,求抛物线的准线方程(5分) 
(2)已知双曲线的离心率等于2,且与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1有相同的焦点,求此双曲线标准方程.(5分)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线l过点$(\sqrt{2},0)$且与双曲线x2-y2=2仅有一个公共点,这样的直线有(  )
A.4条B.3条C.2条D.1条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用反证法证明:命题“若x2+y2=0,则x=y=0”为真时,假设的内容应为x,y不都为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.以y=±$\frac{1}{2}$x为渐近线,且经过点P(2,2)的双曲线的方程为$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{12}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某程序的流程图如图所示,若使输出的结果不大于37,则输入的整数的最大值为5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在正方形ABCD-A1B1C1D1中,E是AA1的中点,则异面直线BE与B1D1所成角的余弦值等于$\frac{\sqrt{10}}{5}$,若正方体边长为1,则四面体B-EB1D1的体积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在某校召开的高考总结表彰会上有3位数学老师、2位英语老师和1位语文老师做典型发言.现在安排这6位老师的发言顺序,则3位数学老师互不相邻的排法共有144种.(请用数字作答)

查看答案和解析>>

同步练习册答案