精英家教网 > 高中数学 > 题目详情
13.某程序的流程图如图所示,若使输出的结果不大于37,则输入的整数的最大值为5

分析 按照程序框图的流程写出前几次循环的结果,据题目对输出s的要求,求出n的最大值,据判断框中n与i的关系求出i的最大值.

解答 解:模拟执行程序,可得
S=0,n=0
若满足条件,n<i,经过第一次循环得到S=2,n=1,
若满足条件,n<i,经过第二次循环得到S=5,n=2,
若满足条件,n<i,经过第三次循环得到S=10,n=3,
若满足条件,n<i,经过第四次循环得到S=19,n=4,
若满足条件,n<i,经过第五次循环得到S=36,n=5,
若满足条件,n<i,经过第六次循环得到S=69,n=6,
∵输出的结果不大于37,
∴n的最大值为4,
∴i的最大值为5.
故答案为:5.

点评 本题主要考查了循环结构,解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M,T(不与A,B重合),DN与圆O相切于点N,连结MC,MB,OT
(1)求证:$\frac{DT}{DO}=\frac{DC}{DM}$;
(2)若∠BMC=40°,试求∠DOT的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)虚轴上的端点B(0,b),右焦点F,若以B为圆心的圆与C的一条渐近线相切于点P,且$\overrightarrow{BP}$∥$\overrightarrow{PF}$,则该双曲线的离心率为$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过原点的直线l与双曲线$\frac{x^2}{9}-\frac{y^2}{3}=-1$有两个交点,则直线l的斜率的取值范围是(  )
A.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$B.$({-∞,-\frac{{\sqrt{3}}}{3}})∪({\frac{{\sqrt{3}}}{3},+∞})$C.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$D.$({-∞,-\frac{{\sqrt{3}}}{3}]∪[\frac{{\sqrt{3}}}{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,PA⊥底面ABCD,AB=AD=2,CB=CD=$\sqrt{7}$,∠BAD=120°,点E在线段AC上,且AE=2EC,F为线段PC的中点.
(1)求证:EF∥平面PBD;
(2)若二面角B-PC-D的平面角的余弦值为$\frac{1}{5}$,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.经过点(2,1),且渐近线与圆x2+(y-2)2=1相切的双曲线的标准方程为(  )
A.$\frac{{x}^{2}}{\frac{11}{3}}$-$\frac{{y}^{2}}{11}$=1B.$\frac{{x}^{2}}{2}$-y2=1C.$\frac{{y}^{2}}{\frac{11}{3}}$-$\frac{{x}^{2}}{11}$=1D.$\frac{{y}^{2}}{11}$-$\frac{{x}^{2}}{\frac{11}{3}}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设数列{an}的前n项和为Sn,a1=2,若Sn+1=$\frac{n+2}{n}$Sn,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前2016项和为$\frac{504}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{{x}^{2}}{k}+\frac{{y}^{2}}{6+k}=1$的实轴长为4,则双曲线的渐近线方程为(  )
A.y=$±\frac{1}{2}x$B.y=±xC.y=±2xD.y=±$\sqrt{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.5名同学参加庆祝抗日胜利70周年文艺演出,要求是甲乙必须相邻,而丙丁不能相邻,不同的排队方法的种数是(  )
A.48B.24C.20D.12

查看答案和解析>>

同步练习册答案