| A. | $\frac{{x}^{2}}{\frac{11}{3}}$-$\frac{{y}^{2}}{11}$=1 | B. | $\frac{{x}^{2}}{2}$-y2=1 | C. | $\frac{{y}^{2}}{\frac{11}{3}}$-$\frac{{x}^{2}}{11}$=1 | D. | $\frac{{y}^{2}}{11}$-$\frac{{x}^{2}}{\frac{11}{3}}$=1 |
分析 设双曲线的方程为mx2-ny2=1(mn>0),将(2,1)代入双曲线的方程,求得渐近线方程,再由直线和圆相切的条件:d=r,解方程可得m,n,进而得到双曲线的方程.
解答 解:设双曲线的方程为mx2-ny2=1(mn>0),
将(2,1)代入方程可得,4m-n=1,①
由双曲线的渐近线方程y=±$\sqrt{\frac{m}{n}}$x,
圆x2+(y-2)2=1的圆心为(0,2),半径为1,
渐近线与圆x2+(y-2)2=1相切,可得:
$\frac{2}{\sqrt{1+\frac{m}{n}}}$=1,即为$\frac{m}{n}$=3,②
由①②可得m=$\frac{3}{11}$,n=$\frac{1}{11}$,
即有双曲线的方程为$\frac{{x}^{2}}{\frac{11}{3}}$-$\frac{{y}^{2}}{11}$=1.
故选:A.
点评 本题考查双曲线的方程的求法,注意运用待定系数法,以及直线和圆相切的条件:d=r,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | e1>e2 | B. | e1<e2 | C. | e1≤e2 | D. | e1≥e2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 3 | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}<m≤\frac{3}{4}$ | B. | $\frac{3}{4}<m≤\frac{4}{5}$ | C. | $\frac{2}{3}<m<\frac{3}{4}$ | D. | $\frac{3}{4}<m<\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com