分析 由题意BF垂直于双曲线的渐近线y=$\frac{b}{a}$x,运用两直线垂直的条件:斜率之积为-1,求出a,c的关系,即可求出该双曲线的离心率.
解答 解:由题意$\overrightarrow{BP}$∥$\overrightarrow{PF}$,可得:
BF垂直于双曲线的渐近线y=$\frac{b}{a}$x,
由F(c,0),B(0,b),kBF=-$\frac{b}{c}$,
可得-$\frac{b}{c}$•$\frac{b}{a}$=-1,
即b2-ac=0,
即c2-a2-ac=0,
由e=$\frac{c}{a}$,可得:
e2-e-1=0,
又e>1,
可得e=$\frac{\sqrt{5}+1}{2}$.
故答案为:$\frac{\sqrt{5}+1}{2}$.
点评 本题考查双曲线的离心率,考查学生的计算能力,确定BF垂直于双曲线的渐近线y=$\frac{b}{a}$x是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | (0,1) | C. | (1,10) | D. | [1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com