分析 将双曲线的方程化为标准方程,可得a,b,c的值,渐近线方程,运用点到直线的距离公式,计算即可得到所求值.
解答 解:双曲线3x2-y2=1即为
$\frac{{x}^{2}}{\frac{1}{3}}$-y2=1,
可得a=$\frac{\sqrt{3}}{3}$,b=1,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{2\sqrt{3}}{3}$,
则一个焦点($\frac{2\sqrt{3}}{3}$,0)到它的渐近线y=$\sqrt{3}$x的距离为
d=$\frac{|\sqrt{3}×\frac{2\sqrt{3}}{3}|}{\sqrt{3+1}}$=1.
故答案为:1.
点评 本题考查双曲线的焦点到渐近线的距离,注意运用点到直线的距离公式,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{2}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{7}$ | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com