精英家教网 > 高中数学 > 题目详情
15.如图,在四棱锥P-ABCD中,侧面PAB⊥底面ABCD,底面ABCD为矩形,PA=PB,O为AB的中点,OD⊥PC.
(1)求证:OC⊥PD;
(2)若PD与平面PAB所成的角为30°,AB=2,求四棱锥的P-ABCD的体积.

分析 (1)连结OP,由侧面PAB⊥底面ABCD得OP⊥平面ABCD,故OP⊥OC,OP⊥OD,又OD⊥PC,故OD⊥平面OPC,于是OD⊥OC,从而OC⊥平面OPD,于是OC⊥PD;
(2)由侧面PAB⊥底面ABCD得AD⊥平面APB,于是∠APD=30°,由直角三角形性质可知AD=1,从而求出棱锥的高OP.

解答 证明:(1)连结OP,
∵PA=PB,O是AB的中点
∴OP⊥AB.
又∵侧面PAB⊥底面ABCD,平面PAB∩平面ABCD=AB,OP?平面PAB,
∴OP⊥平面ABCD,
∵OC?平面ABCD,OD?平面ABCD,
∴OP⊥OD,OP⊥OC,
又∵OD⊥PC,OP?平面OPC,PC?平面OPC,OP∩PC=P,
∴OD⊥平面OPC,
∵OC?平面OPC,
∴OD⊥OC,
又∵OP⊥OC,OP?平面OPD,OD?平面OPD,OP∩OD=O,
∴OC⊥平面OPD,
∵PD?平面OPD,
∴OC⊥PD.
解:(2)取CD中点E,连结OE,
∵OD⊥OC,∴AD=OE=$\frac{1}{2}$CD=$\frac{1}{2}AB=1$.
∵AD⊥AB,平面ABCD⊥平面PAB,平面PAB∩平面ABCD=AB,AD?平面ABCD,
∴AD⊥平面PAB,
∴∠DPA为直线PD与平面PAB所成的角.
∴∠DPA=30°,∴PA=$\sqrt{3}$AD=$\sqrt{3}$,
∴OP=$\sqrt{A{P}^{2}-A{O}^{2}}=\sqrt{2}$.
∴${V_{P-ABCD}}=\frac{1}{3}PO•{S_{ABCD}}=\frac{1}{3}×\sqrt{2}×1×2=\frac{{2\sqrt{2}}}{3}$.

点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知椭圆与双曲线${x^2}-\frac{y^2}{3}=1$共同焦点,它们的离心率之和为$\frac{5}{2}$,则此椭圆方程为(  )
A.$\frac{x^2}{4}+\frac{y^2}{8}=1$B.$\frac{x^2}{12}+\frac{y^2}{16}=1$C.$\frac{x^2}{8}+\frac{y^2}{4}=1$D.$\frac{x^2}{16}+\frac{y^2}{12}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.以y=±$\frac{1}{2}$x为渐近线,且经过点P(2,2)的双曲线的方程为$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{12}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1,F2.若左焦点F1关于其中一条渐近线的对称点位于双曲线上,则该双曲线的离心率e的值为(  )
A.$\sqrt{3}$B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在正方形ABCD-A1B1C1D1中,E是AA1的中点,则异面直线BE与B1D1所成角的余弦值等于$\frac{\sqrt{10}}{5}$,若正方体边长为1,则四面体B-EB1D1的体积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知长方形ABCD中,AB=3,AD=4,现将长方形沿对角线BD折起,使AC=a,得到一个四面体A-BCD,如图所示.
(1)试问:在折叠的过程中,直线AB与CD能否垂直?若能,求出相应的a值;若不能,请说明理由.
(2)求四面体A-BCD体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)=|x-1|-mx,若关于x的不等式f(x)<0解集中的整数恰为3个,则实数m的取值范围为   (  )
A.$\frac{2}{3}<m≤\frac{3}{4}$B.$\frac{3}{4}<m≤\frac{4}{5}$C.$\frac{2}{3}<m<\frac{3}{4}$D.$\frac{3}{4}<m<\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知公差不为零的等差数列{an},满足a1+a3+a5=9,且a1,a4,a16成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}{a_{n+2}}}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.圆O上一点C在直径AB上的射影为D,AD=4,DB=8,求CD,AC和BC的长.

查看答案和解析>>

同步练习册答案