精英家教网 > 高中数学 > 题目详情
设集合A={-2,0,3,4},B={x|x2-2x-3=0},则A∩B=(  )
A、{0}B、{3}
C、{0,2}D、{0,2,4}
考点:交集及其运算
专题:集合
分析:利用交集定义求解.
解答: 解:∵集合A={-2,0,3,4},B={x|x2-2x-3=0}={-1,3},
∴A∩B={3}.
故选:B.
点评:本题考查交集的求法,解题时要认真审题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

x=(a+3)(a-5)与y=(a+2)(a-4)的大小关系是(  )
A、x>yB、x=y
C、x<yD、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中为真命题的是(  )
A、若数列{an}为等比数列的充要条件是an2=an-1•an+1
B、“a=1是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件
C、若命题p:“?x∈R,x2-x-1>0”,则命题的否定为:“?x∈R,x2-x-1≤0”
D、直线a,b为异面直线的充要条件是直线a,b不相交

查看答案和解析>>

科目:高中数学 来源: 题型:

-401是等差数列-5,-9,-13…的第(  )项.
A、98B、99
C、100D、101

查看答案和解析>>

科目:高中数学 来源: 题型:

方程2x+x=5的根所在的区间为(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知F1,F2分别是椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,椭圆G与抛物线y2=-8x有一个公共的焦点,且过点(-2,
2
).
(Ⅰ)求椭圆G的方程;
(Ⅱ)设直线l与椭圆G相交于A、B两点,若
OA
OB
(O为坐标原点),试判断直线l与圆x2+y2=
8
3
的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=
ax
x2+1
+2a,g(x)=alnx-x+a.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求证:对于任意的x1,x2∈(0,e),都有f(x1)>g(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC=2,BC=2
2
,点D是BC的中点.
(Ⅰ)求证:A1B∥平面AC1D
(Ⅱ)求点B到平面AC1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的长轴长为4
2
,且与椭圆
x2
2
+
y2
4
=1有相同的离心率.
(Ⅰ)求椭圆M的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与M有两个交点A、B,且
OA
OB
?若存在,写出该圆的方程,并求|
AB
|的取值范围,若不存在,说明理由.

查看答案和解析>>

同步练习册答案