精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xn,其中n∈Z,n≥2.曲线y=f(x)在点P(x0,f(x0))(x0>0)处的切线为l,l与x轴交于点Q,与y轴交于点R,则
|PQ|
|PR|
=(  )
A.
1
n-1
B.
1
n
C.
2
n-1
D.
2
n
由题可得f′(x)=nxn-1
所以曲线y=f(x)在点(x0,f(x0))处的切线方程是:y-f(x0)=f′(x0)(x-x0).
即y-x0n=nx0n-1(x-x0).
令y=0,得-x0n=nx0n-1(x-x0).
x0>0,
∴x=x0-
x0
n
,得l与x轴交点Q(x0-
x0
n
,0),如图.
|PQ|
|PR|
=
|PA|
|PB|
=
|x0-
x0
n
-x0|
|x0|
=
1
n

故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数f(x)的导函数图象如图所示,则函数f(x)的极小值点个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线C:y=3x-x3及点P(2,2),过点P向曲线C引切线,则切线的条数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-3x.
(1)求曲线y=f(x)在点M(2,2)处的切线方程;
(2)求函数f(x)的单调区间;
(3)求函数f(x)的极值(要列出表格).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x•ex在点(1,e)处的切线方程为(  )
A.y=-2ex+3eB.y=2ex-eC.y=exD.y=x-1+e

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
2
(x-1)2+lnx-ax+a

(Ⅰ)若a=
3
2
,求函数f(x)的极值;
(Ⅱ)若对任意的x∈(1,3),都有f(x)>0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=x3-2x+1在点(1,2)处的切线方程是(  )
A.y=x+1B.y=-x+1C.y=2x-2D.y=-2x+2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数在区间上的最大值就是函数的极大值,则的取值范围是                       

查看答案和解析>>

同步练习册答案