精英家教网 > 高中数学 > 题目详情
函数f(x)的导函数图象如图所示,则函数f(x)的极小值点个数有(  )
A.0个B.1个C.2个D.3个

从f′(x)的图象可知f(x)从左到右的单调性依次为增→减→增→减,
根据极值点的定义可知函数只有一个极小值点.
故答案为B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数的最大值是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-
1
2
ax2
-2x.
(Ⅰ)当a=3时,求函数f(x)的极大值;
(Ⅱ)若函数f(x)存在单调递减区间,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x3在点x=1处的切线方程是(  )
A.y=3x-2B.y=3x-4C.y=2x-1D.y=2x-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a∈R,若函数y=x3+ax,x∈R有大于零的极值点,则(  )
A.a>0B.a<0C.a≥0D.a≤0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=ax+
1
x+b
(a,b∈Z),曲线y=f(x)在点(2,f(2)处的切线方程为y=3.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x三角形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=xn,其中n∈Z,n≥2.曲线y=f(x)在点P(x0,f(x0))(x0>0)处的切线为l,l与x轴交于点Q,与y轴交于点R,则
|PQ|
|PR|
=(  )
A.
1
n-1
B.
1
n
C.
2
n-1
D.
2
n

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求曲线y=
1
x
和y=x2在它们交点处的两条切线与x轴所围成的三角形面积.

查看答案和解析>>

同步练习册答案