精英家教网 > 高中数学 > 题目详情

【题目】设函数的图象为C,下面结论正确的是( )

A.函数f(x)的最小正周期是2π.

B.函数f(x)在区间上是递增的

C.图象C关于点对称

D.图象C由函数g(x)=sin2x的图象向左平移个单位得到

【答案】C

【解析】

A函数f(x)的最小正周期是T==π,在B中,函数f(x)在区间()上是先增后减,在C中,函数的图象的对称中心为(0)kZ,当k=2时,图象C关于点(0)对称,在D中,函数g(x)=sin2x的图象向左平移个单位,得f(x)=sin2(x+)=sin(2x+).

设函数的图象为C

A中,函数f(x)的最小正周期是T==π,故A错误;

B中,函数的增区间满足:

kZ

整理,得:﹣kZ

∴函数f(x)在区间()上是先增后减,故B错误;

C中,由2x=kZ,得x=kZ.

∴函数的图象的对称中心为(0)kZ

k=2时,图象C关于点(0)对称,故C正确;

D中,函数g(x)=sin2x的图象向左平移个单位,得:

f(x)=sin2(x+)=sin(2x+),故D错误.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥PABCD的底面是边长为2的正方形,平面PAD⊥平面ABCDPAAD,∠PDA45°EF分别为ABPC的中点.

1)证明:EF∥平面PAD

2)在线段BC上是否存在一点H,使平面PAH⊥平面DEF?若存在,求此时二面角CHDP的平面角的正切值:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.

1)求曲线的直角坐标方程;

2)设曲线与直线交于点,点的坐标为(31),求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)求函数f(x)的单调区间;

(Ⅱ)若不等式对任意的都成立(其中e是自然对数的底数),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在梯形中,,过分别作的垂线,垂足分别为,已知,将梯形沿同侧折起,使得平面平面,平面平面,得到图2.

(1)证明:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线y2=4x的焦点相同,F1,F2C的左右焦点,MC上任意一点,最大值为1.

(1)求椭圆C的方程;

(2)不过点F2的直线l:y=kx+m(m0)交椭圆CA,B两点.

①若,且,求m的值.

②若x轴上任意一点到直线AF2BF2距离相等,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

I)讨论上的单调性;

(Ⅱ)若对任意的正整数n都有成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数对定义域内的任意,当时,总有,则称函数为单调函数,例如函数是单纯函数,但函数不是单纯函数,下列命题:

①函数是单纯函数;

②当时,函数是单纯函数;

③若函数为其定义域内的单纯函数, ,则

④若函数是单纯函数且在其定义域内可导,则在其定义域内一定存在使其导数,其中正确的命题为__________.(填上所有正确的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是椭圆的左、右焦点,椭圆的短轴长为,点是椭圆上的一点,过点轴的垂线交椭圆于另一点不过点),且的周长的最大值为8.

1)求椭圆的标准方程;

2)若过焦点,在椭圆上取两点,连接,与轴的交点分别为,过点作椭圆的切线,当四边形为菱形时,证明:直线.

查看答案和解析>>

同步练习册答案