精英家教网 > 高中数学 > 题目详情

【题目】记所有非零向量构成的集合为V,对于 ∈V, ,定义V( )=|x∈V|x =x |
(1)请你任意写出两个平面向量 ,并写出集合V( )中的三个元素;
(2)请根据你在(1)中写出的三个元素,猜想集合V( )中元素的关系,并试着给出证明;
(3)若V( )=V( ),其中 ,求证:一定存在实数λ1 , λ2 , 且λ12=1,使得 1 2

【答案】
(1)解:比如 =(1,2), =(3,4),设 =(x,y),

= ,可得x+2y=3x+4y,

即为x+y=0,

则集合V( )中的三个元素为(1,﹣1),(2,﹣2),(3,﹣3)


(2)解:由(1)可得这些向量共线.

理由:设 =(s,t), =(a,b), =(c,d),

= ,可得as+bt=cs+dt,

即有s= t,

=( t,t),

故集合V( )中元素的关系为共线


(3)解:证明:设 =(s,t), =(a,b), =(c,d),

=(u,v), =(e,f),

若V( )=V( ),

即有as+bt=cs+dt,au+bv=ue+fv,

解得a= c+ e+

可令d=f,可得λ1=

λ2=

则一定存在实数λ1,λ2,且λ12=1,使得 1 2


【解析】(1)比如 =(1,2), =(3,4),设 =(x,y),运用数量积的坐标表示,即可得到所求元素;(2)由(1)可得这些向量共线.理由:设 =(s,t), =(a,b), =(c,d),运用数量积的坐标表示,以及共线定理即可得到;(3)设 =(s,t), =(a,b), =(c,d), =(u,v), =(e,f),运用新定义和数量积的坐标表示,解方程可得a,即可得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足:对任意的x1 , x2∈(﹣∞,0)(x1≠x2),都有 <0.则下列结论正确的是(
A.f(0.32)<f(20.3)<f(log25)
B.f(log25)<f(20.3)<f(0.32
C.f(log25)<f(0.32)<f(20.3
D.f(0.32)<f(log25)<f(20.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列推理中属于归纳推理且结论正确的是(
A.由an=2n﹣1,求出S1=12 , S2=22 , S3=32 , …,推断:数列{an}的前n项和Sn=n2
B.由f(x)=xcosx满足f(﹣x)=﹣f(x)对?x∈R都成立,推断:f(x)=xcosx为奇函数
C.由圆x2+y2=r2的面积S=πr2 , 推断:椭圆 =1的面积S=πab
D.由(1+1)2>21 , (2+1)2>22 , (3+1)2>23 , …,推断:对一切n∈N* , (n+1)2>2n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)

x

f(x)

0

2

0

﹣2

0

(Ⅰ)请写出函数f(x)的最小正周期和解析式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0, ]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数的导函数为

若直线与曲线恒相切于同一定点,求的方程;

⑵ 若,求证:当时, 恒成立;

⑶ 若当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x3+3x2+a(a为常数),在[﹣3,3]上有最小值3,那么在[﹣3,3]上f(x)的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中, ,前项和满足).

⑴ 求数列的通项公式;

,求数列的前项和

⑶ 是否存在整数对(其中 )满足?若存在,求出所有的满足题意的整数对;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆O与圆P相交于AB两点,圆心P在圆O上,圆O的弦BC切圆P于点BCP及其延长线交圆PDE两点,过点EEFCE,交CB的延长线于点F.

(1)求证:BPEF四点共圆;

(2)若CD=2,CB=2 ,求出由BPEF四点所确定的圆的直径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海关对同时从ABC三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.

地区

A

B

C

数量

50

150

100

(1)求这6件样品中来自ABC各地区商品的数量;

(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.

查看答案和解析>>

同步练习册答案