精英家教网 > 高中数学 > 题目详情
14.已知过点M(-3,0)的直线l被圆x2+(y+2)2=25所截得的弦长为8,那么直线l的方程为x=-3或5x-12y+15=0.

分析 设直线方程为y=k(x+3)或x=-3,根据直线l被圆圆x2+(y+2)2=25所截得的弦长为8,可得圆心到直线的距离为3,利用点到直线的距离公式确定k值,验证x=-3是否符合题意.

解答 解:设直线方程为y=k(x+3)或x=-3,
∵圆心坐标为(0,-2),圆的半径为5,
∴圆心到直线的距离d=$\sqrt{25-16}$=3,
∴$\frac{|3k+2|}{\sqrt{1+{k}^{2}}}$=3,
∴k=$\frac{5}{12}$,∴直线方程为y=$\frac{5}{12}$(x+3),即5x-12y+15=0;
直线x=-3,圆心到直线的距离d=|-3|=3,符合题意,
故答案为:x=-3或5x-12y+15=0.

点评 本题考查了待定系数法求直线方程,考查了直线与圆相交的相交弦长公式,注意不要漏掉x=-3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,且a1=1,点(an+1,Sn)(n∈N*)恒在直线x-y-1=0上,数列{bn}是等差数列,且b3=2,b6=8.
(1)求数列{an}的通项公式;
(2)若对?n∈N*,(Sn+1)•k≥bn恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x2-cosx,则$f(\frac{3}{5}),f(0),f(-\frac{1}{2})$的大小关系是(  )
A.$f(0)<f(\frac{3}{5})<f(-\frac{1}{2})$B.$f(0)<f(-\frac{1}{2})<f(\frac{3}{5})$C.$f(\frac{3}{5})<f(-\frac{1}{2})<f(0)$D.$f(-\frac{1}{2})<f(0)<f(\frac{3}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设i为虚数单位,则|1-i|=(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若变量x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$,则$\frac{y}{x}$的最大值为(  )
A.2B.3C.$\frac{4}{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求y=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,已知四棱锥P-ABCD的底面是边长为a的菱形,且∠ABC=120°,PC⊥平面ABCD,PC=a,E为PA的中点.

(1)求证:平面EBD⊥平面ABCD;
(2)求点E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列程序框图的功能是寻找使2×4×6×8×…×i>2015成立的i的最小正整数值,则输出框中应填(  )
A.输出i-2B.输出i-1C.输出iD.输出i+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.2014年足球世界杯赛上举行升旗仪式.如图,在坡度为15°的观礼台上,某一列座位所在直线AB与旗杆所在直线MN共面,在该列的第一个座位A和最后一个座位B测得旗杆顶端N的仰角分别为60°和45°,若旗杆的高度为30米,则且座位A、B的距离为10($\sqrt{6}$-$\sqrt{2}$) 米.

查看答案和解析>>

同步练习册答案