精英家教网 > 高中数学 > 题目详情

(12分)设函数是奇函数(a,b,c都是整数),且
(1)求a,b,c的值;
(2)当x<0,的单调性如何?用单调性定义证明你的结论。

(1)由是奇函数,得对定义域内x恒成立,则
对定义域内x恒成立,则c=0,
(或由定义域关于原点对称得c=0)

 又a,b,c是整数,得b=a=1。
(2)由(1)知,当x<0,在(-∞,-1)上单调递增,
在[-1,0)上单调递减,下用定义证明之。

同理,可证在[-1,0)上单调递减。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数f (x)是正比例函数,函数g (x)是反比例函数,且f(1)=1,g(1)=2,
(1)求函数f (x)和g(x);
(2)判断函数f (x)+g(x)的奇偶性.
(3)求函数f (x)+g(x)在(0,]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知二次函数满足,及.
(1)求的解析式;
(2)若,试求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数满足
(1)求函数的解析式 ;  
(2)若上恒成立,求实数的取值范围;
(3)求当>0)时的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数,求在区间[2,5]上的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 已知的反函数为.
(1)若,求的取值范围D;
(2)设函数,当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)设是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[ 2,3 ] 时, 222233
(1)求的解析式;
(2)若上为增函数,求的取值范围;
(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数在区间[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题10分)
函数f(x)=(a x+a -x),  (a>0且a≠1)
(1) 讨论f(x)的奇偶性
(2) 若函数f(x)的图象经过点(2,), 求f(x)

查看答案和解析>>

同步练习册答案