Èçͼ£¬ÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ¶¥µãΪA1£¬A2£¬B1£¬B2£¬½¹µãΪF1£¬F2£¬|A1B2|=
7
£¬S?A1B1A2B2=2S ?B1F1B2F2
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßm¹ýQ£¨1£¬1£©£¬ÇÒÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬µ±QÊÇMNµÄÖеãʱ£¬ÇóÖ±ÏßmµÄ·½³Ì£®
£¨¢ó£©ÉènΪ¹ýÔ­µãµÄÖ±Ïߣ¬lÊÇÓën´¹Ö±ÏཻÓÚPµãÇÒÓëÍÖÔ²ÏཻÓÚÁ½µãA£¬BµÄÖ±Ïߣ¬|
OP
|=1
£¬ÊÇ·ñ´æÔÚÉÏÊöÖ±ÏßlʹÒÔABΪֱ¾¶µÄÔ²¹ýÔ­µã£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖªa2+b2=7£¬a=2c£¬ÓÉ´ËÄܹ»Çó³öÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©·ÖÀàÌÖÂÛ£¬µ±Ö±ÏßmµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßmµÄ·½³ÌΪy=k£¨x-1£©+1£¬ÀûÓõã²î·¨£¬½áºÏQÊÇMNµÄÖе㣬¼´¿ÉÇóÖ±ÏßmµÄ·½³Ì£»
£¨¢ó£©ÉèA¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¼ÙÉèʹÒÔABΪֱ¾¶µÄÔ²¹ýÔ­µã³ÉÁ¢µÄÖ±Ïßl´æÔÚ£¬ÔòÒÔABΪֱ¾¶µÄÔ²¹ýÔ­µã£¬¡àOA¡ÍOB£¬¡àx1x2+y1y2=0£®
£¨i£©µ±l²»´¹Ö±ÓÚxÖáʱ£¬¸ù¾ÝÌâÉèÌõ¼þÄܹ»ÍƳöÖ±Ïßl²»´æÔÚ£®
£¨ii£©µ±l´¹Ö±ÓÚxÖáʱ£¬Âú×ã|
OP
|=1
µÄÖ±ÏßlµÄ·½³ÌΪx=1»òx=-1£¬ÓÉA¡¢BÁ½µãµÄ×ø±êΪ£¨1£¬
3
2
£©£¬£¨1£¬-
3
2
£©»ò£¨-1£¬
3
2
£©£¬£¨-1£¬-
3
2
£©£®µ±x=1ʱ
OA
OB
=£¨1£¬
3
2
£©•£¨1£¬-
3
2
£©=-
5
4
¡Ù0£®µ±x=-1ʱ£¬
OA
OB
=£¨-1£¬
3
2
£©•£¨-1£¬-
3
2
£©=-
5
4
¡Ù0£®ËùÒÔ´ËʱֱÏßlÒ²²»´æÔÚ£®
½â´ð£º ½â£º£¨¢ñ£©ÒÀÌâÒâÓÐ|A1B2|=
a2+b2
=
7£¬
¡àa2+b2=7¡­£¨1·Ö£©
ÓÖÓÉS¡õA1B1A2B2=2S¡õB1F1B2F2£®ÓÐ2a•b=2•2c•b£¬¡àa=2c¡­£¨2·Ö£©
½âµÃa2=4£¬b2=3£¬¡­£¨3·Ö£©£¬
¹ÊÍÖÔ²CµÄ·½³ÌΪ
x2
4
+
y2
3
=1
£®¡­£¨4·Ö£©
£¨¢ò£©µ±Ö±ÏßmµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßmµÄ·½³ÌΪy=k£¨x-1£©+1£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôò
x
2
1
4
+
y
2
1
3
=1
£¬
x
2
2
4
+
y
2
2
3
=1
£¬
Á½Ê½Ïà¼õµÃ£ºk=
y1-y2
x1-x2
=-
3
4
¡Á
x1+x2
y1+y2
£®
¡ßQÊÇMNµÄÖе㣬
¡à¿ÉµÃÖ±ÏßmµÄбÂÊΪk=
y1-y2
x1-x2
=-
3
4
£¬£¨7·Ö£©
µ±Ö±ÏßmµÄбÂʲ»´æÔÚʱ£¬½«x=1´úÈëÍÖÔ²·½³Ì²¢½âµÃM(1£¬
3
2
)
£¬N(1£¬-
3
2
)
£¬
ÕâʱMNµÄÖеãΪ£¨1£¬0£©£¬
¡àx=1²»·ûºÏÌâÉèÒªÇ󣮡­£¨8·Ö£©
×ÛÉÏ£¬Ö±ÏßmµÄ·½³ÌΪ3x+4y-7=0¡­£¨9·Ö£©
£¨¢ó£©ÉèA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¼ÙÉèÂú×ãÌâÉèµÄÖ±Ïßl´æÔÚ£¬
£¨i£©µ±l²»´¹Ö±ÓÚxÖáʱ£¬ÉèlµÄ·½³ÌΪy=kx+m£¬ÓÉlÓën´¹Ö±ÏཻÓÚPµãÇÒ|
OP
|=1
µÃ
|m|
1+k2
=1
£¬¼´m2=k2+1£¬¡­£¨10·Ö£©
ÓÖ¡ßÒÔABΪֱ¾¶µÄÔ²¹ýÔ­µã£¬¡àOA¡ÍOB£¬¡àx1x2+y1y2=0£®
½«y=kx+m´úÈëÍÖÔ²·½³Ì£¬µÃ£¨3+4k2£©x2+8kmx+£¨4m2-12£©=0£¬
ÓÉÇó¸ù¹«Ê½¿ÉµÃx1+x2=
-8km
3+4k2
£¬¢Üx1x2=
4m2-12
3+4k2
£®¢Ý
0=x1x2+y1y2=x1x2+£¨kx1+m£©£¨kx2+m£©=x1x2+k2x1x2+km(x1+x2)+m2=(1+k2)x1x2+km(x1+x2)+m2£¬
½«¢Ü£¬¢Ý´úÈëÉÏʽ²¢»¯¼òµÃ£¨1+k2£©£¨4m2-12£©-8k2m2+m2£¨3+4k2£©=0£¬¢Þ
½«m2=1+k2´úÈë¢Þ²¢»¯¼òµÃ-5£¨k2+1£©=0£¬Ã¬¶Ü£®
¼´´ËʱֱÏßl²»´æÔÚ£®¡­£¨12·Ö£©
£¨ii£©µ±l´¹Ö±ÓÚxÖáʱ£¬Âú×ã|
OP
|=1
µÄÖ±ÏßlµÄ·½³ÌΪx=1»òx=-1£¬
ÓÉA¡¢BÁ½µãµÄ×ø±êΪ£¨1£¬
3
2
£©£¬£¨1£¬-
3
2
£©»ò£¨-1£¬
3
2
£©£¬£¨-1£¬-
3
2
£©£®
µ±x=1ʱ£¬
OA
OB
=£¨1£¬
3
2
£©•£¨1£¬-
3
2
£©=-
5
4
¡Ù0£¬
µ±x=-1ʱ£¬
OA
OB
=£¨-1£¬
3
2
£©•£¨-1£¬-
3
2
£©=-
5
4
¡Ù0£®
¡à´ËʱֱÏßlÒ²²»´æÔÚ£®
×ÛÉÏËùÊö£¬Ê¹
OA
OB
=0³ÉÁ¢µÄÖ±Ïßl²»³ÉÁ¢£¬¼´²»´æÔÚÖ±ÏßlʹÒÔABΪֱ¾¶µÄÔ²¹ýÔ­µã£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÓÐÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬×ó½¹µãµ½×ø±êÔ­µã¡¢ÓÒ½¹µã¡¢ÓÒ×¼ÏߵľàÀëÒÀ´Î³ÉµÈ²îÊýÁУ®
£¨1£©ÇóÍÖÔ²µÄÀëÐÄÂÊ
£¨2£©ÈôÖ±ÏßlÓë´ËÍÖÔ²ÏཻÓÚA£¬BÁ½µã£¬ÇÒABÖеãMΪ£¨-2£¬1£©£¬|AB|=4
3
£¬ÇóÖ±ÏßlµÄ·½³ÌºÍÍÖÔ²·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ù¾ÝÈý¸öº¯Êýf£¨x£©=2x£¬g£¨x£©=2x£¬h£¨x£©=log2x¸ø³öÒÔÏÂÎå¾ä»°£º
£¨1£©f£¨x£©£¬g£¨x£©£¬h£¨x£©ÔÚÆä¶¨ÒåÓòÉ϶¼ÊÇÔöº¯Êý£»
£¨2£©f£¨x£©µÄÔö³¤ËÙ¶ÈʼÖÕ²»±ä£»
£¨3£©f£¨x£©µÄÔö³¤ËÙ¶ÈÔ½À´Ô½¿ì£»
£¨4£©g£¨x£©µÄÔö³¤ËÙ¶ÈÔ½À´Ô½¿ì£»
£¨5£©h£¨x£©µÄÔö³¤ËÙ¶ÈÔ½À´Ô½Âý£®
ÆäÖÐÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©
A¡¢2B¡¢3C¡¢4D¡¢5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x£©ÎªRÉϵĿɵ¼º¯Êý£¬ÇÒ?x¡ÊR£¬¾ùÓÐf£¨x£©£¾f¡ä£¨x£©£¬ÔòÒÔÏÂÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢f£¨2013£©£¾e2013f£¨0£©
B¡¢f£¨2013£©£¼e2013f£¨0£©
C¡¢f£¨2013£©=e2013f£¨0£©
D¡¢f£¨2013£©Óëe2013f£¨0£©´óСÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=2sin£¨x-
¦Ð
6
£©sin£¨x+
¦Ð
3
£©£¬x¡ÊR£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨¢ò£©ÔÚ¡÷ABCÖУ¬ÈôA=
¦Ð
4
£¬Èñ½ÇCÂú×ãf£¨
C
2
+
¦Ð
6
£©=
1
2
£¬Çó
BC
AB
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ex+ax£¨a¡ÊR£©£¬g£¨x£©=exlnx£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®
£¨¢ñ£©ÉèÇúÏßy=f£¨x£©ÔÚx=1´¦µÄÇÐÏßΪl£¬µã£¨1£¬0£©µ½Ö±ÏßlµÄ¾àÀëΪ
2
2
£¬ÇóaµÄÖµ£»
£¨¢ò£©Èô¶ÔÓÚÈÎÒâʵÊýx¡Ý0£¬f£¨x£©£¾0ºã³ÉÁ¢£¬ÊÔÈ·¶¨ÊµÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©µ±a=-1ʱ£¬º¯ÊýM£¨x£©=g£¨x£©-f£¨x£©ÔÚ[1£¬e]ÉÏÊÇ·ñ´æÔÚ¼«Öµ£¿Èô´æÔÚ£¬Çó³ö¼«Öµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA¡¢B¡¢CΪ¡÷ABCµÄÈý¸öÄڽǣ¬Æä¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬Èô
m
=(cosB£¬sinB)
£¬
n
=(cosC£¬-sinC)
£¬ÇÒ
m
n
=
1
2
£®
£¨¢ñ£©ÇóA£»
£¨¢ò£©Èôa=2
3
£¬ b+c=4
£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊÊÇ
2
2
£¬A1£¬A2·Ö±ðÊÇÍÖÔ²CµÄ×ó¡¢ÓÒÁ½¸ö¶¥µã£¬µãFÊÇÍÖÔ²CµÄÓÒ½¹µã£®µãDÊÇxÖáÉÏλÓÚA2ÓÒ²àµÄÒ»µã£¬ÇÒÂú×ã
1
|A1D|
+
1
|A2D|
=
2
|FD|
=2
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³ÌÒÔ¼°µãDµÄ×ø±ê£»
£¨2£©¹ýµãD×÷xÖáµÄ´¹Ïßn£¬ÔÙ×÷Ö±Ïßl£ºy=kx+mÓëÍÖÔ²CÓÐÇÒ½öÓÐÒ»¸ö¹«¹²µãP£¬Ö±Ïßl½»Ö±ÏßnÓÚµãQ£®ÇóÖ¤£ºÒÔÏß¶ÎPQΪֱ¾¶µÄÔ²ºã¹ý¶¨µã£¬²¢Çó³ö¶¨µãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£®ÍÖÔ²ÉÏÁ½µãA¡¢BÂú×㣺¡÷ABF2µÄÖܳ¤Îª8£¬µãF1ÔÚ±ßABÉÏ£¬cos¡ÏABF2=
3
5
£¬|BF2|=
3
2
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôµãPΪÍÖÔ²µÄÓÒ¶¥µã£¬Ö±Ïßl£ºy=kx+mÓëÍÖÔ²C½»ÓÚÁ½µãM£¬N£¨M£¬N²»ÊÇ×óÓÒ¶¥µã£©£¬ÇÒ
PM
¡Í
PN
£®ÊÔ˵Ã÷£ºÖ±Ïßl¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸