Èçͼ£¬ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊÊÇ
2
2
£¬A1£¬A2·Ö±ðÊÇÍÖÔ²CµÄ×ó¡¢ÓÒÁ½¸ö¶¥µã£¬µãFÊÇÍÖÔ²CµÄÓÒ½¹µã£®µãDÊÇxÖáÉÏλÓÚA2ÓÒ²àµÄÒ»µã£¬ÇÒÂú×ã
1
|A1D|
+
1
|A2D|
=
2
|FD|
=2
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³ÌÒÔ¼°µãDµÄ×ø±ê£»
£¨2£©¹ýµãD×÷xÖáµÄ´¹Ïßn£¬ÔÙ×÷Ö±Ïßl£ºy=kx+mÓëÍÖÔ²CÓÐÇÒ½öÓÐÒ»¸ö¹«¹²µãP£¬Ö±Ïßl½»Ö±ÏßnÓÚµãQ£®ÇóÖ¤£ºÒÔÏß¶ÎPQΪֱ¾¶µÄÔ²ºã¹ý¶¨µã£¬²¢Çó³ö¶¨µãµÄ×ø±ê£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÓÉ
1
|A1D|
+
1
|A2D|
=2
ÓÐ
1
x+a
+
1
x-a
=2
£¬ÓÉFD|=1£¬¿ÉµÃx=c+1£¬½áºÏÀëÐÄÂÊÊÇ
2
2
£¬¼´¿ÉÇó³ö¼¸ºÎÁ¿£¬¼´¿ÉÇóÍÖÔ²CµÄ·½³ÌÒÔ¼°µãDµÄ×ø±ê£»
£¨2£©Ö±Ïßl£ºy=kx+m´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬Çó³öPµÄ×ø±ê£¬½ø¶øÓÉ
MP
MQ
=0
£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð£º £¨1£©½â£ºA1£¨-a£¬0£©£¬A2£¨a£¬0£©£¬F£¨c£¬0£©£¬ÉèD£¨x£¬0£©£¬
ÓÉ
1
|A1D|
+
1
|A2D|
=2
ÓÐ
1
x+a
+
1
x-a
=2
£¬
ÓÖ|FD|=1£¬¡àx-c=1£¬¡àx=c+1£¬
ÓÚÊÇ
1
c+1+a
+
1
c+1-a
=2
£¬
¡àc+1=£¨c+1+a£©£¨c+1-a£©£¬
ÓÖ¡ß
c
a
=
2
2
⇒a=
2
c
£¬¡àc+1=(c+1+
2
c)(c+1-
2
c)
£¬
¡àc2-c=0£¬ÓÖc£¾0£¬¡àc=1£¬
¡àa=
2
£¬b=1
£¬
¡àÍÖÔ²C£º
x2
2
+y2=1
£¬ÇÒD£¨2£¬0£©£®
£¨2£©Ö¤Ã÷£º¡ßQ£¨2£¬2k+m£©£¬ÉèP£¨x0£¬y0£©£¬
ÓÉ
y=kx+m
x2
2
+y2=1
x2
2
+(kx+m)2=1
⇒x2+2£¨kx+m£©2=2⇒£¨2k2+1£©x2+4kmx+2m2-2=0£¬
ÓÉÓÚ¡÷=16k2m2-4£¨2k2+1£©£¨2m2-2£©=0⇒2k2-m2+1=0⇒m2=2k2+1£¨*£©£¬
¶øÓÉΤ´ï¶¨Àí£º2x0=
-4km
2k2+1
£¬
¡àx0=
-2km
2k2+1
£¬
ÓÉ£¨*£©¿ÉµÃ
-2km
m2
=-
2k
m
£¬¡ày0=kx0+m=-
2k2
m
+m=
1
m
£¬¡àP(-
2k
m
£¬
1
m
)
£¬
ÉèÒÔÏß¶ÎPQΪֱ¾¶µÄÔ²ÉÏÈÎÒâÒ»µãM£¨x£¬y£©£¬
ÓÉ
MP
MQ
=0
ÓÐ(x+
2k
m
)(x-2)+(y-
1
m
)(y-(2k+m))=0⇒x2+y2+(
2k
m
-2)x+(2k+m+
1
m
)y+(1-
2k
m
)=0
£¬
ÓɶԳÆÐÔÖª¶¨µãÔÚxÖáÉÏ£¬Áîy=0£¬È¡AʱÂú×ãÉÏʽ£¬¹Ê¹ý¶¨µãC£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éΤ´ï¶¨Àí£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

´Ó0£¬1£¬2£¬3£¬4£¬5£¬6£¬7£¬8£¬9£¬Õâ10¸öÊý×ÖÖÐͬʱȡ4¸ö²»Í¬µÄÊý£¬ÆäºÍΪżÊý£¬Ôò²»Í¬µÄÈ¡·¨Îª
 
£¨ÓÃÊý×Ö×÷´ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ¶¥µãΪA1£¬A2£¬B1£¬B2£¬½¹µãΪF1£¬F2£¬|A1B2|=
7
£¬S?A1B1A2B2=2S ?B1F1B2F2
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßm¹ýQ£¨1£¬1£©£¬ÇÒÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬µ±QÊÇMNµÄÖеãʱ£¬ÇóÖ±ÏßmµÄ·½³Ì£®
£¨¢ó£©ÉènΪ¹ýÔ­µãµÄÖ±Ïߣ¬lÊÇÓën´¹Ö±ÏཻÓÚPµãÇÒÓëÍÖÔ²ÏཻÓÚÁ½µãA£¬BµÄÖ±Ïߣ¬|
OP
|=1
£¬ÊÇ·ñ´æÔÚÉÏÊöÖ±ÏßlʹÒÔABΪֱ¾¶µÄÔ²¹ýÔ­µã£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½â¶þÔªÒ»´Î·½³Ì×飺
n-3r=0
2r
C
r
n
=60
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬an£¾0£¬a1=
2
3
£¬ÇÒ-
3
a2
£¬
1
a3
£¬
1
a4
³ÉµÈ²îÊýÁУ®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÉèÊýÁÐ{bn}Âú×ãbn•log3£¨1-Sn+1£©=1£¬ÇóÊʺϷ½³Ìb1b2+b2b3+¡­+bnbn+1=
25
51
µÄÕýÕûÊýnµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijԲ׶ÇúÏßÓÐÏÂÁÐÐÅÏ¢£º
¢ÙÇúÏßÊÇÖá¶Ô³ÆÍ¼ÐΣ¬ÇÒÁ½×ø±êÖá¶¼ÊǶԳÆÖ᣻
¢Ú½¹µãÔÚxÖáÉÏÇÒ½¹µãµ½×ø±êÔ­µãµÄ¾àÀëΪ1£»
¢ÛÇúÏßÓë×ø±êÖáµÄ½»µã²»ÊÇÁ½¸ö£»
¢ÜÇúÏß¹ýµãA£¨1£¬
3
2
£©£®
£¨1£©ÅжϸÃÔ²×¶ÇúÏßµÄÀàÐͲ¢ÇóÇúÏߵķ½³Ì£»
£¨2£©µãFÊǸÄÔ²×¶ÇúÏߵĽ¹µã£¬µãF¡äÊÇF¹ØÓÚ×ø±êÔ­µãOµÄ¶Ô³Æµã£¬µãPΪÇúÏßÉϵ͝µã£¬Ì½ÇóÒÔ|PF|ÒÔ¼°|PF|•|PF¡ä|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬É϶¥µãΪA£¬¹ýµãAÓëAF2´¹Ö±µÄÖ±Ïß½»xÖḺ°ëÖáÓÚµãQ£¬ÇÒ2
F1F2
+
F2Q
=
0
£®
£¨1£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£» 
£¨2£©Èô¹ýA¡¢Q¡¢F2ÈýµãµÄԲǡºÃÓëÖ±Ïßl£ºx-
3
y-3=0ÏàÇУ¬ÇóÍÖÔ²CµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôʵÊýx¡¢yÂú×ãÔ¼ÊøÌõ¼þ
y¡Ü1
x+y¡Ý0
x-y-2¡Ü0
£¬
£¨1£©ÇóÄ¿±êº¯Êýz=x-2yµÄ×î´óÖµ£»
£¨2£©ÇóÄ¿±êº¯Êýz=
y+2
x+2
µÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢Ù¡°x£¼1¡±ÊÇ¡°x2£¼1¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ
¢ÚÈôf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]µÄżº¯ÊýÇÒÔÚ[-1£¬0]ÉÏÊǼõº¯Êý£¬¦È¡Ê£¨
¦Ð
4
£¬
¦Ð
2
£©£¬Ôòf£¨sin¦È£©£¼f£¨cos¦È£©
¢ÛÈôf£¨x£©µÄͼÏóÔÚµãA£¨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³ÌÊÇy=
1
2
x+2£¬Ôòf£¨1£©+f¡ä£¨1£©=3
¢ÜÈôf£¨x£©=lg£¨
x2+1
-x£©£¬Ôòf£¨lg2£©+f£¨lg
1
2
£©=0
¢Ýº¯Êýf£¨x£©=ex+x-2ÔÚÇø¼ä£¨0£¬1£©ÉÏÓÐÁãµã£®
ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸