精英家教网 > 高中数学 > 题目详情
某圆锥曲线有下列信息:
①曲线是轴对称图形,且两坐标轴都是对称轴;
②焦点在x轴上且焦点到坐标原点的距离为1;
③曲线与坐标轴的交点不是两个;
④曲线过点A(1,
3
2
).
(1)判断该圆锥曲线的类型并求曲线的方程;
(2)点F是改圆锥曲线的焦点,点F′是F关于坐标原点O的对称点,点P为曲线上的动点,探求以|PF|以及|PF|•|PF′|的取值范围.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知条件知该曲线为焦点在x轴上的椭圆,且2c=2,2a=4,由此能求出圆锥曲线的标准方程.
(2)设P(x0,y0),推导出满足y02=3-
3x02
4
,从而得到|PF|2=
x02
4
-2x0+4
∈[1,9],由此能求出|PF|的取值范围和|PF|•|PF′|的取值范围.
解答: 解:(1)∵该曲线与坐标轴至少有3个交点,
∴该曲线为焦点在x轴上的椭圆,
且2c=2,c=1,(2分)
F1、F2分别是该圆锥曲线的左、右焦点,
|AF1|+|AF2|=
22+
9
4
+
02+
9
4
=4

所以2a=4,a=2,b2=4-1=3,(5分)
∴所求圆锥曲线的标准方程为
x2
4
+
y2
3
=1
.(6分)
(2)设P(x0,y0),
则满足
x02
4
+
y02
3
=1

y02=3-
3x02
4
,(-2≤x0≤2),
|PF|2=(x0-1)2+3-
3x02
4
=
x02
4
-2x0+4
,(7分)
由-2≤x0≤2,
得到|PF|2=(x0-1)2+3-
3x02
4

=
x02
4
-2x0+4
∈[1,9],
|PF|∈[1,3],9分
|PF|+|PF′|=2a=4|PF|•|PF′|=|PF|•(4-|PF|)=4|PF|-|PF′|2
由|PF|∈[1,3],
知|PF|•|PF′|∈[3,4],
∴|PF|的取值范围是[1,3],|PF|•|PF′|的取值范围是[3,4].(13分)
点评:本题考查曲线方程类型的判断及求法,考查线段的取值范围的求法,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
4
=1(a>0)的一条渐近线与圆(x-3)2+y2=8相交于M,N两点且|MN|=4,则此双曲线的离心率为(  )
A、
5
B、
3
5
5
C、
5
5
3
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+ax(a∈R),g(x)=exlnx(e为自然对数的底数).
(Ⅰ)设曲线y=f(x)在x=1处的切线为l,点(1,0)到直线l的距离为
2
2
,求a的值;
(Ⅱ)若对于任意实数x≥0,f(x)>0恒成立,试确定实数a的取值范围;
(Ⅲ)当a=-1时,函数M(x)=g(x)-f(x)在[1,e]上是否存在极值?若存在,求出极值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=2n2-1
(1)求数列{an}的通项公式;
(2)是否存在正整数p、q(p>1且q>1)使a1、ap、aq成等比数列?若存在,求出所有这样的等比数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
2
2
,A1,A2分别是椭圆C的左、右两个顶点,点F是椭圆C的右焦点.点D是x轴上位于A2右侧的一点,且满足
1
|A1D|
+
1
|A2D|
=
2
|FD|
=2

(1)求椭圆C的方程以及点D的坐标;
(2)过点D作x轴的垂线n,再作直线l:y=kx+m与椭圆C有且仅有一个公共点P,直线l交直线n于点Q.求证:以线段PQ为直径的圆恒过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆的右焦点F2与抛物线y2=4x的焦点重合,过F2与x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且|CD|=2
2
|ST|.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P为椭圆上一点,若过点M(2,0)的直线l与椭圆相交于不同两点A和B,且满足
OA
+
OB
=t
OP
(O为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个项点到两个焦点的距离分别是9和1
(1)求椭圆C的标准方程;
(2)若椭圆C上一点P到两焦点的距离之积为m,求当m取最大值时,P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点.
(Ⅰ)若椭圆上的点A(1,
3
2
)到点F1、F2的距离之和等于4,求椭圆C的方程;
(Ⅱ)设点P是(Ⅰ)中所得椭圆C上的动点,求线段F1P的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
i
2+i
在复平面内对应的点的坐标是
 

查看答案和解析>>

同步练习册答案