精英家教网 > 高中数学 > 题目详情
求满足下列条件的直线l的方程:
(1)倾斜角为
π
4
,与y轴的交点为(0,2);
(2)与坐标轴的交点为(-5,0),(0,4).
考点:直线的一般式方程
专题:直线与圆
分析:(1)利用直线的斜截式方程求解.
(2)利用直线的截距式方程求解.
解答: 解:(1)∵直线l的倾斜角为
π
4
,与y轴的交点为(0,2),
∴直线l的斜率k=tan
π
4
=1,纵坐标b=2,
∴直线l的方程为y=x+2.
(2)∵直线l与坐标轴的交点为(-5,0),(0,4),
∴直线l的方程为:
x
-5
+
y
4
=1

整理,得:4x-5y+20=0.
点评:本题考查直线方程的求法,是基础题,解题时要认真审题,注意直线的斜截式方程和截距式方程的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在一次人才招聘会上,甲、乙两家公司开出的工资标准分别是:
甲公司:第一年月工资1500元,以后每年月工资比上一年月工资增加230元;
乙公司:第一年月工资2000元,以后每年月工资在上一年月工资基础上递增5%.
设某人年初想从甲、乙两公司中选择一家公司去工作.
(1)若此人分别在甲公司或乙公司连续工作n年,则他在两公司第n年的月工资分别是多少?
(2)若此人在一家公司连续工作10年,则从哪家公司得到的报酬较多?(参考数据:1.059≈1.5513,1.0510≈1.6289)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的一个焦点F1(-
3
,0),经过点A(1,
3
2
),对称轴为坐标轴.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(0,
5
3
)的直线l交椭圆C于M、N两点,线段MN中点为Q,点B(-1,0),当l⊥QB时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>c)的离心率为
2
2
,且经过点P(1,
2
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线x=my+1交椭圆E于A,B两点,射线OA,OB分别交直线l:x=2于M,N,记△OAB,△OMN的面积分别为S1,S2,λ=
S2
S1
,当m∈[
1
2
2
2
]时,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在2014年全国高校自主招生考试中,某高校设计了一个面试考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立回答全部问题.规定:至少正确回答其中2题的便可通过.已知6道备选题中考生甲有4题能正确回答,2题不能回答;考生乙每题正确回答的概率都为
2
3
,且每题正确回答与否互不影响.
(Ⅰ)分别写出甲、乙两考生正确回答题数的分布列,并计算其数学期望;
(Ⅱ)试用统计知识分析比较两考生的通过能力.

查看答案和解析>>

科目:高中数学 来源: 题型:

国家标准规定:轻型汽车的氮氧化物排放量不得超过80mg/km.根据这个标准,检测单位从某出租车公司运营的A、B两种型号的出租车中分别抽取6辆,对其氮氧化物的排放量进行检测,检测结果记录如下:(单位:mg/km)
A 85 80 85 60 90 80
B 70 85 95 x 75 65
由于表格被污损,数据x看不清,统计员只记得A、B两种出租车的氮氧化物排放量的平均值相等.
(1)求表格中x的值;
(2)从被检测的6辆B种型号的出租车中任取3辆,记事件A:至少有两辆出租车氮氧化物排放量未超过80mg/km,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某家电生产企业市场营销部对本厂生产的某种电器进行了市场调查,发现每台的销售利润与该电器的无故障使用时间T(单位:年)有关.若T≤2,则销售利润为0元;若2<T≤3,则销售利润为100元;若T>3,则销售利润为200元,设每台该种电器的无故障使用时间T≤2,2<T≤3,T>3这三种情况发生的概率分别是P1
P2,P3,又知P1,P2是方程25x2-15x+a=0的两个根,且P2=P3
(Ⅰ)求P1,P2,P3的值;
(Ⅱ)记X表示销售两台该种电器的销售利润总和,求X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全体实数集R,A={x|x2-3x+2≤0},B={x|x2-2ax+a≤0},且A∩B≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}通项公式an=nsin(
n+1
2
π)+1的前n项和Sn,则S2013=
 

查看答案和解析>>

同步练习册答案