精英家教网 > 高中数学 > 题目详情
11.$\int_{-2}^2$(sinx+1)dx=4.

分析 找出原函数,代入积分上限和下限计算即可.

解答 解:原式=(-cosx+x)|${\;}_{-2}^{2}$=4;
故答案为:4.

点评 本题考查了定积分的计算;找出原函数是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系为:p=$\frac{k}{x+5}$(0≤x≤8),若距离为1km时,宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设f(x)为建造宿舍与修路费用之和.
(1)求f(x)的表达式,并写出其定义域;
(2)宿舍应建在离工厂多远处,可使总费用f(x)最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α在第四象限,且cosα=$\frac{3}{5}$,则$\frac{1+\sqrt{2}cos(2α-\frac{π}{4})}{sin(α+\frac{π}{2})}$等于(  )
A.$\frac{2}{5}$B.$\frac{7}{5}$C.$\frac{14}{5}$D.$-\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A1B1C1中,侧棱与底面垂直,AB⊥BC,AB=BC=BB1=2,M,N分别是AB,A1C的中点.
(1)求证:MN∥平面BCC1B1
(2)求证:MN⊥平面A1B1C;
(3)求以M,A1,B1,C,为顶点的三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=log2(1-2x)+$\frac{1}{x+1}$的定义域为(  )
A.$(0,\frac{1}{2})$B.$(-∞,\frac{1}{2})$C.$(-1,0)∪(0,\frac{1}{2})$D.$(-∞,-1)∪(-1,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差d>0的等差数列{an}中,a1=10,且a1,2a2+2,5a3成等比数列.
(1)求公差d及通项an
(2)设Sn=$\frac{1}{{{a_1}{a_2}}}$+$\frac{1}{{{a_2}{a_3}}}$+…+$\frac{1}{{{a_n}{a_{n+1}}}}$,求证:Sn<$\frac{1}{40}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了了解我校高2017级本部和大学城校区的学生是否愿意参加自主招生培训的情况,对全年级2000名高三学生进行了问卷调查,统计结果如表:
校区愿意参加不愿意参加
重庆一中本部校区220980
重庆一中大学城校区80720
(1)若从愿意参加自主招生培训的同学中按分层抽样的方法抽取15人,则大学城校区应抽取几人;
(2)现对愿意参加自主招生的同学组织摸底考试,考试题共有5道题,每题20分,对于这5道题,考生“如花姐”完全会答的有3题,不完全会的有2道,不完全会的每道题她得分S的概率满足:P(S=6k)=$\frac{4-k}{6}$,k=1,2,3,假设解答各题之间没有影响,
①对于一道不完全会的题,求“如花姐”得分的均值E(S);
②试求“如花姐”在本次摸底考试中总得分的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+(2m-1)x-mlnx.
(1)当m=1时,求曲线y=f(x)的极值;
(2)求函数f(x)的单调区间;
(3)若对任意m∈(2,3)及x∈[1,3]时,恒有mt-f(x)<1成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2-(a+2)x+2(a为常数).
(Ⅰ)当a=1时,解关于x的不等式f(x)<0;
(Ⅱ)当a∈R时,解关于x的不等式f(x)<0.

查看答案和解析>>

同步练习册答案