精英家教网 > 高中数学 > 题目详情
16.求三个不相等的实数a,b,c最大值的程序框图如图所示,则空白判断框内应为(  )
A.a>b?B.a>c?C.d>b或a>c?D.a>b且a>c?

分析 由满足条件输出a,且a是三数中的最大数可得判断框中的条件.

解答 解:由框图可知,满足条件输出a,则a为a,b,c中的最大者,
∴判断框中应是“a>b且a>c”才可输出a.
故选:D.

点评 本题考查程序框图,考查学生读取图表的能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=cos(2x-$\frac{π}{2}$)-2x(x∈R).
(Ⅰ)判断f(x)的奇偶性和单调性:
(Ⅱ)是否存在实数m,使不等式f(2x-m+3)+f(x2-m2)≤0对x∈R恒成立?若存在,求出m的取值范围;若不存在,请 说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.平面内三个向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$,其中$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,$\overrightarrow{OA}$与$\overrightarrow{OC}$的夹角为30°,且|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=$\frac{3}{2}$,|$\overrightarrow{OC}$|=2$\sqrt{3}$,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ,μ∈R),则$\frac{λ}{μ}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足:an+1=|an-1|,(n∈N*
(1)若a1=$\frac{11}{4}$,求a9与a10的值.
(2)若a1=a∈(k,k+1),k∈N*,求数列{an}的前3k项的和S3k(用k,a表示)
(3)是否存在a1,n0(a1∈R,n0∈N*),使得当n≥n0时,an恒为常数?若存在,求出a1,n0,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点A(x,y)关于直线x+y+c=0的对称点A′的坐标为(-y-c,-x-c),关于直线x-y+c=0的对称点A″的坐标为(y-c,x+c),曲线f(x,y)=0关于直线x+y+c=0的对称曲线为f(-y-c,-x-c)=0,关于直线x-y+c=0的对称曲线为f(y-c,x+c)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙两位乒乓球选手,在过去的40局比赛中,甲胜24局.现在两人再次相遇.
(1)打满3局比赛,甲最有可能胜乙几局,说明理由;
(2)采用“三局两胜”或“五局三胜”两种赛制,哪种对甲更有利,说明理由.(注:计算时,以频率作为概率的近似值.“三局两胜”就是有一方胜局达到两局时,就结束比赛;“五局三胜”就是有一方胜局达到三局时,就结束比赛)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个算法的程序框图所图所示,则该程序输出的结果为(  )
A.$\frac{2012}{2013}$B.$\frac{2013}{2014}$C.$\frac{1}{2013}$D.$\frac{1}{2014}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线y2=$\frac{1}{4}$x,直线l与该抛物线交于A,B两点
(1)若线段AB的中点为(1,2),求直线l的方程
(2)若A,B两点到抛物线的F的距离之和为6,求直线l斜率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,a1=3,an+1=2an+2n+1-1(n∈N*).
(1)求a2,a3
(2)求实数λ使{$\frac{{a}_{n}+λ}{{2}^{n}}$}为等差数列,并由此求出an与Sn
(3)求n的所有取值,使$\frac{{S}_{n}}{{a}_{n}}$∈N*,说明你的理由.

查看答案和解析>>

同步练习册答案