精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=2sin(2x),将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有30个零点,在所有满足上述条件的[a,b]中,则b-a的最小值为(  )
A.$\frac{42π}{3}$B.$\frac{40π}{3}$C.$\frac{43π}{3}$D.$\frac{45π}{3}$

分析 根据y=Asin(ωx+φ)的图象变换规律求得g(x)的定义,再根据函数的零点的定义求得函数g(x)的零点,从而得出结论.

解答 解:∵函数f(x)=2sin(2x),将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,
得到函数y=g(x)=2sin2(x+$\frac{π}{6}$ )+1=2sin(2x+$\frac{π}{3}$)+1 的图象.
令g(x)=0,求得 sin(2x+$\frac{π}{3}$)=-$\frac{1}{2}$,2x+$\frac{π}{3}$=2kπ+$\frac{7π}{6}$,或2x+$\frac{π}{3}$=2kπ+$\frac{11π}{6}$,
即x=kπ+$\frac{5π}{12}$或 x=kπ+$\frac{3π}{4}$,k∈Z,
根据y=g(x)在[a,b]上至少含有30个零点,不妨假设a=$\frac{5π}{12}$(此时,k=0),
则此时b的最小值为14π+$\frac{3π}{4}$(此时,k=14),
b-a=(14π+$\frac{3π}{4}$)-$\frac{5π}{12}$=$\frac{43π}{3}$,
故选:C.

点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,函数的零点的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设实数x,y满足$\left\{{\begin{array}{l}{y≤2x+2}\\{x+y-2≥0}\\{x≤2}\end{array}}\right.$,则$\frac{x+y-1}{x+3}$的取值范围是$[\frac{1}{5},\frac{7}{5}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则a5等于(  )
A.3•43B.3•44C.44D.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0)的图象与y=2的图象的两相邻交点的距离为π,要得到y=2sinωx的图象,只需把y=f(x)的图象(  )
A.向右平移$\frac{π}{6}$B.向左平移$\frac{π}{6}$C.向左平移$\frac{π}{3}$D.向右平移$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设(1+x)(1-x)5=a1(1+x)+a2(1+x)2+…+a6(1+x)6,则a1+a3+a5等于(  )
A.242B.121C.244D.122

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,在定义域上既是奇函数又存在零点的函数是(  )
A.y=-$\sqrt{x}$B.y=$\frac{1}{x}$C.y=ex-e-xD.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线a与平面α不平行,则下列结论成立的是(  )
A.平面α内任意直线都与直线a异面B.平面α内不存在与直线a平行的直线
C.平面α内的直线都与直线a相交D.直线a与平面α一定有公共点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,正四棱柱ABCD-A1B1C1D1的底面边长为1,DD1=2,E为DD1的中点,M为AC1的中点,连结C1E,CE,AC,AE,ME,CM.
(1)求证:ME⊥平面ACC1
(2)求点C1到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在极坐标系中,曲线C的极坐标方程为ρ=-2sinθ(0≤θ<2π),直线l经过点A(4,$\frac{3π}{2}$)与点B(4,$\frac{11π}{6}$),以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系.
(1)求曲线C的参数方程与直线l的直角坐标方程;
(2)若点M、N分别在曲线C和直线l上运动,试求M、N两点的最小距离.

查看答案和解析>>

同步练习册答案