精英家教网 > 高中数学 > 题目详情
5.点P为△ABC平面上一点,有如下三个结论:
②若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的重心;
②若sinA•$\overrightarrow{PA}$+sinB$\overrightarrow{PB}$+sinC•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的内心;
③若sin2A•$\overrightarrow{PA}$+sin2B•$\overrightarrow{PB}$+sin2C•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的外心.
回答以下两个小问:
(1)请你从以下四个选项中分别选出一项,填在相应的横线上.
A.重心  B.外心  C.内心  D.重心
(2)请你证明结论③

分析 (1)直接由已知条件逐个加以判断;
(2)先证明两个引理:引理1:点P为△ABC平面上一点,则满足条件$x\overrightarrow{PA}+y\overrightarrow{PB}+z\overrightarrow{PC}=\overrightarrow{0}$ (x,y,z不全为零)的点P是唯一的,引理2:若点P为△ABC的外心,则sin2A•$\overrightarrow{PA}$+sin2B•$\overrightarrow{PB}$+sin2C•$\overrightarrow{PC}$=$\overrightarrow{0}$,把引理1和引理2结合起来,可得结论.

解答 (1)解:A重心,C内心,B外心;
(2)证明:首先证明两个引理:
引理1:点P为△ABC平面上一点,则满足条件$x\overrightarrow{PA}+y\overrightarrow{PB}+z\overrightarrow{PC}=\overrightarrow{0}$ (x,y,z不全为零)的点P是唯一的.
证明:假设还有一点Q满足$x\overrightarrow{QA}+y\overrightarrow{QB}+z\overrightarrow{QC}=\overrightarrow{0}$,则有$x\overrightarrow{QP}+y\overrightarrow{QP}+z\overrightarrow{QP}=\overrightarrow{0}$,
即$(x+y+z)\overrightarrow{QP}=\overrightarrow{0}$,可得$\overrightarrow{QP}=\overrightarrow{0}$,∴点P与点Q重合,∴点P是唯一的.
引理2:若点P为△ABC的外心,则sin2A•$\overrightarrow{PA}$+sin2B•$\overrightarrow{PB}$+sin2C•$\overrightarrow{PC}$=$\overrightarrow{0}$.
证明:∵2sin2Asin2Bcos2C+2sin2Bsin2Ccos2A+2sin2Csin2Acos2B
=sin2Asin(2B+2C)+sin2Bsin(2C+2A)+sin2Csin(2A+2B)
=-sin22A-sin22B-sin22C,
∴设△ABC的外接圆的半径为r,则$(sin2A•\overrightarrow{PA}+sin2B•\overrightarrow{PB}+sin2C•\overrightarrow{PC})^{2}$
=r2•(sin22A+sin22B+sin22C+2sin2Asin2Bcos2C+2sin2Bsin2Ccos2A+2sin2Csin2Acos2B)=0,
即:$sin2A•\overrightarrow{PA}+sin2B•\overrightarrow{PB}+sin2C•\overrightarrow{PC}$=0
把引理1和引理2结合起来,可知结论③成立.

点评 本题考查了平面向量的基本定理,记住三角形内一点的一般结论是解题关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\left\{\begin{array}{l}{({\frac{1}{2}})^{x-1}},x≤0\\{log_2}(4-x),0<x<4\end{array}$,若f(x)=4,则实数x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.sin40°cos10°+cos140°sin10°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),作直线l交椭圆于P,Q两点,M为线段PQ的中点,O为坐标原点,设直线l的斜率为k1,直线OM的斜率为k2,k1k2=-$\frac{2}{3}$.则椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设椭圆E1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=l(a>b>0)的两个顶点与两个焦点构成一个面积2的正方形,P是E1上的动点,椭圆E2:$\frac{x^2}{8}+\frac{y^2}{2}$=l
(1)若椭圆E2上的点Q满足:$\overrightarrow{OQ}=λ\overrightarrow{OP}(λ>0)$,求λ的最小值;
(2)设E1在P处的切线为l,l与E2交于A、B两点,当l的倾斜角为$\frac{π}{4}$时,求三角形OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的通项公式an=2n-(-1)n,n∈N*.设an1,an2,…,ant(其中n1<n2<…<nt,t∈N*)成等差数列.
(1)若t=3.
①当n1,n2,n3为连续正整数时,求n1的值;
②当n1=1时,求证:n3-n2为定值;
(2)求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=$\frac{{x}^{2}}{x-2}$(x>2)的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=ax2-(a+1)x+1.
(1)若不等式f(x)<mx的解集为{x|1<x<2},求实数a、m的值;
(2)解不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax-lnx-1,若曲线y=f(x)在点(2,f(2))处的切线与直线2x+y-1=0垂直.
(1)求a的值;
(2)函数g(x)=f(x)-m(x-1)(m∈R)恰有两个零点x1,x2(x1<x2),求函数g(x)的单调区间及实数m的取值范围.

查看答案和解析>>

同步练习册答案