精英家教网 > 高中数学 > 题目详情
20.如图,矩形ABCD的内接Rt△FHE,(H是直角顶点),H是AB的中点,E,F分别落在线段BC,AD上.已知AB=2,AD=$\sqrt{3}$,记∠BHE=θ.
(1)试将Rt△FHE的周长L表示为θ的函数,并写出定义域;
(2)当θ取何值时,Rt△FHE的周长L取最大值,并求出此时周长L.

分析 (1)根据锐角三角函数的定义分别求出EH,FH,利用勾股定理求出EF,即可得出L关于θ的函数;
(2)令sinθ+cosθ=t,使用换元法求出L关于t的函数,根据θ的范围得出t的范围,从而得出L的最值.

解答 解:(1)在Rt△BEH中,∵BH=$\frac{1}{2}AB=1$,∠BHE=θ,
∴EH=$\frac{1}{cosθ}$,
在Rt△AFH中,AH=1,∠AHF=90°-θ,
∴FH=$\frac{1}{cos(90°-θ)}$=$\frac{1}{sinθ}$,
∵∠EHF=90°,
∴EF=$\sqrt{E{H}^{2}+F{H}^{2}}$=$\frac{1}{sinθcosθ}$.
∵$BE=tanθ≤\sqrt{3},AF=\frac{1}{tanθ}≤\sqrt{3}$,
∴$\frac{{\sqrt{3}}}{3}≤tanθ≤\sqrt{3}$,
∴$\frac{π}{6}≤$θ≤$\frac{π}{3}$.
∴L=$\frac{1}{cosθ}$+$\frac{1}{sinθ}$+$\frac{1}{sinθcosθ}$,θ∈[$\frac{π}{6}$,$\frac{π}{3}$].
(2)由(1)得L=$\frac{1}{cosθ}$+$\frac{1}{sinθ}$+$\frac{1}{sinθcosθ}$=$\frac{sinθ+cosθ+1}{sinθcosθ}$,
设sinθ+cosθ=t,则$sinθcosθ=\frac{{{t^2}-1}}{2}$,
∴L=$\frac{t+1}{\frac{{t}^{2}-1}{2}}$=$\frac{2}{t-1}$.
∵θ∈[$\frac{π}{6}$,$\frac{π}{3}$],t=sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),
∴$\frac{1+\sqrt{3}}{2}$t≤$\sqrt{2}$.
当t=$\frac{1+\sqrt{3}}{2}$即θ=$\frac{π}{6}$或$\frac{π}{3}$时,L取得最大值2$\sqrt{3}$+2.

点评 本题考查了函数解析式的求解,三角函数的恒等变换与求值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若直线l1:mx+y-1=0,l2:4x+my+m-4=0,则“m=2”是“直线l1⊥l2”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知随机变量η=3ξ+2,且Dξ=2,则Dη=18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\frac{2}{x+1}$,点O为坐标原点,点An(n,f(n))(n∈N*),向量$\overrightarrow j=(0,1)$,θn是向量$\overrightarrow{O{A_n}}$与$\overrightarrow j$的夹角,则$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+\frac{{cos{θ_1}}}{{sin{θ_1}}}+…+\frac{{cos{θ_{2016}}}}{{sin{θ_{2016}}}}$=(  )
A.$\frac{2015}{1008}$B.$\frac{2017}{2016}$C.$\frac{2016}{2017}$D.$\frac{4032}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2$\sqrt{2}$,PA=4且E为PB的中点.
(1)求证:CE∥平面PAD;
(2)求直线CE与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知扇形的半径为3cm,圆心角为60°,则扇形的面积为$\frac{3π}{2}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x(lnx-ax)在区间(${\frac{1}{e}$,e)上有两个极值,则实数a的取值范围为(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=$\left\{\begin{array}{l}x+2\\{x^2}\\-2x+8\end{array}$$\begin{array}{l}({x≤-1})\\({-1<x<2})\\({x≥2})\end{array}$
(1)画出f(x)的图象;
(2)求f(f(-1))的值;
(3)方程f(x)=a有两个不同的实根,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=ln(x2-tx+2)+1.
①若t=e,求f(e)的值;
②若函数f(x)的定义域为R,求t的取值范围.

查看答案和解析>>

同步练习册答案