精英家教网 > 高中数学 > 题目详情
15.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2$\sqrt{2}$,PA=4且E为PB的中点.
(1)求证:CE∥平面PAD;
(2)求直线CE与平面PAC所成角的正弦值.

分析 (1)取PA中点Q,连结QE、QD,推导出四边形QECD是平行四边形,由此能证明CE∥平面PAD.
(2)过E作平面PAC的垂线,记垂足为O,连结CO,∠ECO是直线CE与平面PAC所成的角,过B作BN⊥AC,记垂足为N,过E作EM⊥AB=M,连结CM,由此能求出直线CE与平面PAC所成角的正弦值.

解答 (1)证明:取PA中点Q,连结QE、QD,
∵E为PB中点,∴QE∥AB,且QE=$\frac{1}{2}$AB,
∵底面ABCD是直角梯形,∠CDA=∠BDA=90°,AB=AD=2DC=2$\sqrt{2}$,
∴QE∥CD,且QE=CD,∴四边形QECD是平行四边形,
∴EC∥QD,又FC?平面PAD,QD?平面PAD,
∴CE∥平面PAD.
(2)解:过E作平面PAC的垂线,记垂足为O,连结CO,
则∠ECO是直线CE与平面PAC所成的角,
过B作BN⊥AC,记垂足为N,
∵PA⊥平面ABCD,∴PA⊥BN,
又PA,AC?平面PAC,且PA∩AC=A,
∴BN⊥平面PAC,
∴EO∥BN,又∵E是AB的中点,∴EO=$\frac{1}{2}$BN=$\frac{2\sqrt{10}}{5}$,
过E作EM⊥AB=M,连结CM,得CE=2$\sqrt{3}$,
在Rt△CEO中,sin∠ECO=$\frac{EO}{CE}$=$\frac{\sqrt{30}}{15}$,
∴直线CE与平面PAC所成角的正弦值为$\frac{\sqrt{30}}{15}$.

点评 本题考查线面平行的证明,考查线面角的正弦值的求法,考查学生分析解决问题的能力,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)在点x0处取得极值,则必有(  )
A.f′(x0)=0B.f′(x0)<0
C.f′(x0)=0且f″(x0)<0D.f′(x0)或f′(x0)不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个几何体的三视图如图所示,则该几何体体积=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn=-3n2+49n.
(1)请问数列{an}是否为等差数列?如果是,请证明;
(2)设bn=|an|,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知|$\overrightarrow a}$|=3,|$\overrightarrow b}$|=4,且$\overrightarrow a$与$\overrightarrow b$不共线,若($\overrightarrow a$+k$\overrightarrow b$)⊥($\overrightarrow a$-k$\overrightarrow b$),则k=$±\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,矩形ABCD的内接Rt△FHE,(H是直角顶点),H是AB的中点,E,F分别落在线段BC,AD上.已知AB=2,AD=$\sqrt{3}$,记∠BHE=θ.
(1)试将Rt△FHE的周长L表示为θ的函数,并写出定义域;
(2)当θ取何值时,Rt△FHE的周长L取最大值,并求出此时周长L.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow a$=(4,-2),$\overrightarrow b$=(-1,3),$\overrightarrow c$=(6,8).
(1)求($\overrightarrow a$+$\overrightarrow b$)•$\overrightarrow c$;
(2)若$\overrightarrow a$⊥($\overrightarrow b$-λ$\overrightarrow c$),求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点A(0,1),离心率为$\frac{\sqrt{2}}{2}$,过左焦点F1的直线l交椭圆于C,D两点,右焦点为F2
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若|CF2|,|CD|,|DF2|成等差数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=2x2+2-x+2的图象经过点(1,a),求a的值等于(  )
A.$\frac{9}{2}$B.$\frac{21}{2}$C.6D.12

查看答案和解析>>

同步练习册答案