精英家教网 > 高中数学 > 题目详情

 
(1)若上递增,求的取值范围;
(2)求上的最小值.

(1)(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的定义域关于原点对称,且满足以下三个条件:
是定义域中的数时,有
是定义域中的一个数);
③当时,
(1)判断之间的关系,并推断函数的奇偶性;
(2)判断函数上的单调性,并证明;
(3)当函数的定义域为时,
①求的值;②求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,实数a,b为常数),
(1)若a=1,在(0,+∞)上是单调增函数,求b的取值范围;
(2)若a≥2,b=1,判断方程在(0,1]上解的个数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知函数的图像关于原点对称,并且当时,,试求上的表达式,并画出它的图像,根据图像写出它的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)若函数在(,1)上单调递减,在(1,+∞)上单调递增,求实数a的值;
(2)是否存在正整数a,使得在()上既不是单调递增函数也不是单调递减函数?若存在,试求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=3x+2,x∈[-1,2],证明该函数的单调性并求出其最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的定义域为,且恒有等式对任意的实
成立.
(Ⅰ)试求的解析式;
(Ⅱ)讨论上的单调性,并用单调性定义予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,若不等式的解集为(-1,3)。
(1)求的值;
(2)若函数上的最小值为1,求实数的值。

查看答案和解析>>

同步练习册答案