精英家教网 > 高中数学 > 题目详情
17.△ABC中,a=5,c=2,S△ABC=4,则b=(  )
A.$\sqrt{17}$B.$\sqrt{41}$C.$\sqrt{17}$或$\sqrt{41}$D.$\sqrt{14}$

分析 由已知利用三角形面积公式可求sinB的值,利用同角三角函数基本关系式可求cosB的值,进而利用余弦定理即可得解b的值.

解答 解:∵a=5,c=2,S△ABC=4=$\frac{1}{2}$acsinB=$\frac{1}{2}$×5×2×sinB,
∴解得:sinB=$\frac{4}{5}$,可得:cosB=±$\sqrt{1-si{n}^{2}B}$=±$\frac{3}{5}$,
∴b=$\sqrt{{a}^{2}+{c}^{2}-2accosB}$=$\sqrt{17}$或$\sqrt{41}$.
故选:C.

点评 本题主要考查了三角形面积公式,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC中,a:b:c=1:5:6,则sinA:sinB:sinC等于(  )
A.1:5:6B.6:5:1C.6:1:5D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2=4},B={x|mx=4},若B⊆A,则实数m的所有值构成的集合是(  )
A.{2}B.{-2}C.{-2,2}D.{-2,0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.以下选项正确的是③④.
 ①方程y=kx+2可表示经过点(0,2)的所有直线
②过点P(3,-4),且截距相等的直线方程为x+y-1=0
③函数y=$\sqrt{{x^2}+1}$+$\sqrt{{x^2}-4x+13}$的最小值为2$\sqrt{5}$
④若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段长为2$\sqrt{2}$,则m的倾斜角可以是15°或75°
⑤点P(4,-2)与圆x2+y2=4上任一点连线段的中点轨迹方程为(x-2)2+(y-1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z满足(z+3i)(3+i)=7-i,则复数z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)=Asin(ωx+φ),(A>0,ω>0,φ∈(0,π)),其导函数f'(x)的部分图象如图所示,则下列对f(x)的说法正确的是(  )
A.最大值为4且关于直线$x=-\frac{π}{2}$对称
B.最大值为4且在$[{-\frac{π}{2}\;\;,\;\;\frac{π}{2}}]$上单调递增
C.最大值为2且关于点$({-\frac{π}{2}\;\;,\;\;0})$中心对称
D.最大值为2且在$[{-\frac{π}{2}\;\;,\;\;\frac{3π}{2}}]$上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若ab≠0且a<b,则下列不等式一定成立的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.a2<b2C.a2>b2D.2a<2b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某海轮以30n mile/h的速度航行,在A点测得海面上油井P在南偏东60°方向,向北航行40min后达到B点,测得油井P在南偏东30°方向,海轮改为北偏东60°的航向再行驶80min到达C点,则P,C间的距离为(  )
A.20n mileB.20$\sqrt{7}$n mileC.30n mileD.30$\sqrt{7}$n mile

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)定义域为[-1,1],若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.
(1)判断并证明函数f(x)的奇偶性;
(2)判断并证明函数f(x)的单调性;
(3)设f(1)=1,若f(x)<m2-2am+1,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案