精英家教网 > 高中数学 > 题目详情
3.写出数列-$\frac{1}{2×1}$,$\frac{1}{2×2}$,-$\frac{1}{2×3}$,$\frac{1}{2×4}$的一个通项公式an=(-1)n•$\frac{1}{2n}$.

分析 设此数列为{an},由数列-$\frac{1}{2×1}$,$\frac{1}{2×2}$,-$\frac{1}{2×3}$,$\frac{1}{2×4}$可知:符号为(-1)n,分子为1,分母为2n.即可得出.

解答 解:设此数列为{an},由数列-$\frac{1}{2×1}$,$\frac{1}{2×2}$,-$\frac{1}{2×3}$,$\frac{1}{2×4}$可知:符号为(-1)n,分子为1,分母为2n.
可得通项公式:an=(-1)n•$\frac{1}{2n}$.
故答案为:an=(-1)n•$\frac{1}{2n}$.

点评 本题考查了数列通项公式的求法,考查了推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.求函数y=$\frac{4}{si{n}^{2}x}$+sin2x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线(3-7a+2a2)x-(9-a2)y+3a2=0的倾斜角的正弦为$\frac{{\sqrt{2}}}{2}$,则a的值为(  )
A.$-\frac{2}{3}$或4B.3或$-\frac{2}{3}$C.$-\frac{2}{3}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,直线x+y-2n=0(n∈N*)经过点(an,Sn).
(1)求出a1、a2、a3、a4的值;
(2)请你猜想通项公式an的表达式,并选择合适的方法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.把长度为16的线段分成两段,各围成一个正方形,它们的面积和最小值为(  )
A.2B.4C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(3,-4),$\overrightarrow{b}$=(2,x),$\overrightarrow{c}$=(2,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{a}$⊥$\overrightarrow{c}$,求:
(1)$\overrightarrow{b}$•$\overrightarrow{c}$;       
(2)$\overrightarrow{b}$、$\overrightarrow{c}$的夹角;   
(3)|$\overrightarrow{b}$+$\overrightarrow{c}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD=2PD,PD⊥底面ABCD.
(1)证明:PA⊥BD;
(2)若PD=AD,求PA与面PBD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合P={x|-1<x<b,b∈N},Q={x|x2-3x<0,x∈Z},若P∩Q≠∅,则b的最小值等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对于定义在D上的函数y=f(x),若同时满足
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c,则称f(x)为“平底型”函数.
判断f1(x)=|2x-1|+|2x-2|,f2(x)=|2x-1|-|2x-2|是否是“平底型”函数?简要说明理由.

查看答案和解析>>

同步练习册答案