精英家教网 > 高中数学 > 题目详情
17.已知集合A={x|x2-2x-3≤0},集合B={x|log2x>1},则A∩B=(2,3].

分析 求出集合A,B,然后求解交集即可.

解答 解:集合A={x|x2-2x-3≤0}={x|-1≤x≤3},集合B={x|log2x>1}={x|x>2},
则A∩B=(2,3].
故答案为:(2,3].

点评 本题考查不等式的解法,集合的交集的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在等差数列{an}中,已知a3=7,a6=16,将此等差数列的各项排成如图所示的三角形数阵,则此数阵中,第10行从左到右的第5个数是148.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{x{\;}^{2}-x,x≤1}\\{x-3,x>1}\end{array}\right.$.
(1)在下面的坐标系中,作出函数f(x)的图象并写出单调区间;
(2)若f(a)=2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足R(x)=$\left\{\begin{array}{l}{-0.4{x}^{2}+3.4x+0.8,(0≤x≤5)}\\{9,(x>5)}\end{array}\right.$,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本);
(2)要使甲厂有盈利,求产量x的范围;
(3)甲厂生产多少台产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数z满足z=$\frac{1+i}{i}$+3i,则|z|=(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某球的体积与表面积的数值相等,则球的半径是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三个不等式①x2-4x+3<0,②x2-6x+8<0,③2x2-9x+m<0.要使同时满足①②的所有x的值满足③,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设点A(3,y)(y≥3),B(x,x2)(0≤x≤2),则直线AB倾斜角的取值范围是[0,$\frac{π}{2}$)∪[$\frac{3}{4}π$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等比数列{an}的公比为q=2,且a1a2a3…a30=330,则a1a4a7…a28=${(\frac{3}{2})^{10}}$.

查看答案和解析>>

同步练习册答案