精英家教网 > 高中数学 > 题目详情
如图,ABCD为边长2的菱形,∠BAD=60°,对角线交于点O,沿BD将BCD折起,使二面角C-BD-A为120°,P为折起后AC上一点,且AP=2PC,Q为△ABD的中心.
(1)求证:PQ∥平面BCD;
(2)求证:PO⊥平面ABD;
(3)求BP与平面BCD所成角的正弦值.
考点:直线与平面所成的角,直线与平面平行的判定,直线与平面垂直的判定
专题:综合题,空间位置关系与距离,空间角
分析:(1)由题意可得AQ=2QO,又AP=2PC,所以PQ∥CO,又PQ?平面BCD,CO?平面BCD,由线面平行的判定定理可得;
(2)易得OC=OA=2cos30°=
3
,在△AOC中,由余弦定理可得AC=3,在△PAO中,可得PO=1,由勾股定理可得PO⊥OA,又可得PO⊥BD,又AO∩BD=0,由线面垂直的判定可得;
(3)建立坐标系,求出
BP
=(-1,0,1),平面BCD的法向量,利用向量的夹角公式,即可求出BP与平面BCD所成角的正弦值.
解答: (1)证明:如图由ABCD为菱形,则AC⊥BD,∠AOC=120°,
由Q为三角形ABD的重心,可得AQ=2QO,又AP=2PC,所以PQ∥CO,
又PQ?平面BCD,CO?平面BCD,所以PQ∥平面BCD;
(2)证明:由题意OC=OA=2cos30°=
3
,在△AOC中,由余弦定理可得
AC2=3+3-2×
3
×
3
×cos120°=9,所以AC=3,
又∠AOC=120°,AO=CO,∴∠PAO=30°,
在△PAO中,OA=
3
,AP=2,∠PAO=30°,所以PO=1,
所以PO2+OA2=AP2,所以PO⊥OA,
又BD⊥平面AOC,所以PO⊥BD,又AO∩BD=0,
所以PO⊥平面ABD;
(3)解:建立如图所示的坐标系,则B(1,0,0),D(-1,0,0),C(0,
3
2
3
2
),P(0,0,1),
BP
=(-1,0,1),
CB
=(0,-
3
2
,-
3
2
),
CD
=(-1,-
3
2
,-
3
2
),
设平面BCD的法向量为
m
=(x,y,z),则
x-
3
2
y-
3
2
z=0
-x-
3
2
y-
3
2
z=0

m
=(0,-
3
,1),
设BP与平面BCD所成角为α,则sinα=|
1
2
•2
|=
2
4
点评:本题考查直线与平面平行的判定,以及直线与平面垂直的判定,考查线面角,正确运用向量法是关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(1)若年销售量增加的比例为0.4x,为使本年度的年利润比上年度有所增加,则投入成本增加的比例x应在什么范围内?
(2)在(1)的条件下,当x为何值时,本年度的年利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,我国某搜救舰艇以30(海里/小时)的速度在南海某区域搜索,在点A处测得基地P在南偏东60°,向北航行40分钟后到达点B,测得基地P在南偏东30°,并发现在北偏东60°的航向上有疑似马航飘浮物,搜救舰艇立即转向直线前往,再航行80分钟到达飘浮物C处,求此时P、C间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为
1
2
,各局比赛的结果相互独立,第1局甲当裁判.
(Ⅰ)求第4局甲当裁判的概率;
(Ⅱ)用X表示前4局中乙当裁判的次数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3).
(1)求AB边上的高线所在的直线方程;
(2)求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中点.
(Ⅰ)求证:AC⊥A1B;
(Ⅱ)求证:B1C⊥平面AEC1

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为U=R,集合A=(-∞,-3]∪[6,+∞),B={x|-2<x<8}.
(1)求如图阴影部分表示的集合;
(2)已知非空集合C={x|x>2a且x<a+1},若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,求a的值及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上定点O,A,B,向量
a
=
OA
b
=
OB
,且|
a
|=2,|
b
|=1,|
a
+
b
|=
7
,点C是平面上的动点,记
c
=
OC
,若(
a
-2
c
)•(
b
-
c
)=0,给出以下命题:
①|
a
-
b
|=
3

②点C的轨迹是一个圆;
③|
AC
|的最大值为
7+1
2
,最小值为
7-1
2

④|
BC
|的最大值为
3
+1
2
,最小值为
3
-1
2

其中正确的有
 
(填上你认为正确的所有命题的序号)

查看答案和解析>>

同步练习册答案