16£®ÒÑÖªÍÖÔ²£ºC£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬Ò»Ìõ×¼Ïߣºx=2£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèOÎª×ø±êÔ­µã£¬MÊÇlÉϵĵ㣬FΪÍÖÔ²CµÄÓÒ½¹µã£¬¹ýµãF×÷OMµÄ´¹ÏßÓëÒÔOMΪֱ¾¶µÄÔ²½»ÓÚP£¬QÁ½µã£®
¢ÙÈôPQ=$\sqrt{6}$£¬ÇóÔ²DµÄ·½³Ì£»
¢ÚÈôMÊÇlÉϵ͝µã£¬ÇóÖ¤£ºPÔÚ¶¨Ô²ÉÏ£¬²¢Çó¸Ã¶¨Ô²µÄ·½³Ì£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£ºe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬$\frac{{a}^{2}}{c}$=2£¬½â·½³Ì¿ÉÇóa£¬cÀûÓÃb2=a2-c2£¬¿ÉÇób£¬¼´¿ÉÇó½âÍÖÔ²CµÄ·½³Ì£»
£¨2£©¢ÙÏÈÉèM£¨2£¬t£©£¬È»ºóÇó³öÔ²DµÄ·½³Ì¼°Ö±ÏßPQµÄ·½³Ì£¬ÁªÁ¢Ö±ÏßÓëÔ²µÄ·½³Ì£¬½áºÏ·½³ÌµÄ¸ùÓëϵÊý¹ØÏµ¼°ÏÒ³¤¹«Ê½¼°ÒÑÖªPQ=6£¬¿ÉÇót£¬½ø¶ø¿ÉÇóÔ²DµÄ·½³Ì£»
¢ÚÉè³öP£¬ÓÉ¢ÙÖªPÂú×ãÔ²D¼°Ö±ÏßPQµÄ·½³Ì£¬´úÈëºóÏûÈ¥²ÎÊýt¼´¿ÉÅжϣ®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬$\frac{{a}^{2}}{c}$=2£¬
½âµÃa=$\sqrt{2}$£¬c=1£¬
¼´ÓÐb=$\sqrt{{a}^{2}-{c}^{2}}$=1£¬
ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£»
£¨2£©¢ÙÓÉ£¨1£©Öª£ºF£¨1£¬0£©£¬ÉèM£¨2£¬t£©£¬
Ô²ÐÄD£¨1£¬$\frac{1}{2}$t£©£¬°ë¾¶Îª$\sqrt{1+\frac{1}{4}{t}^{2}}$£¬
ÔòÔ²DµÄ·½³Ì£º£¨x-1£©2+£¨y-$\frac{1}{2}$t£©2=1+$\frac{1}{4}$t2£¬
Ö±ÏßPQµÄбÂÊΪ-$\frac{2}{t}$£¬
ÔòÖ±Ïß·½³Ì£º2x+ty-2=0£¬
¡àÓÉÏÒ³¤¹«Ê½¿ÉµÃ£¬2$\sqrt{1+\frac{1}{4}{t}^{2}-£¨\frac{|2+\frac{1}{2}{t}^{2}-2|}{\sqrt{4+{t}^{2}}}£©^{2}}$=$\sqrt{6}$£¬
¡àt2=4£¬t=¡À2£®
¡àÔ²DµÄ·½³Ì£º£¨x-1£©2+£¨y-1£©2=2»ò£¨x-1£©2+£¨y+1£©2=2£»
¢ÚÖ¤Ã÷£ºÉèP£¨x1£¬y1£©£¬
ÓÉ¢ÙÖª£º$\left\{\begin{array}{l}{£¨{x}_{1}-1£©^{2}+£¨{y}_{1}-\frac{1}{2}t£©^{2}=1+\frac{1}{4}{t}^{2}}\\{2{x}_{1}+t{y}_{1}-2=0}\end{array}\right.$£¬
¼´£º$\left\{\begin{array}{l}{{{x}_{1}}^{2}+{{y}_{1}}^{2}-2{x}_{1}-t{y}_{1}=0}\\{2{x}_{1}+t{y}_{1}-2=0}\end{array}\right.$£¬
ÏûÈ¥tµÃ£ºx12+y12=2£¬
¡àµãPÔÚ¶¨Ô²x2+y2=2ÉÏ£®

µãÆÀ ±¾Ìâ×ۺϿ¼²éÁËÀûÓÃÍÖÔ²µÄÐÔÖÊÇó½âÍÖÔ²·½³Ì£¬Ö±ÏßÓëÔ²£¬ÓëÍÖԲλÖùØÏµµÄÓ¦Ó㬻¹¿¼²éÁËÔËËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®µÈ±ÈÊýÁÐ{an}ÖУ¬a1£¬a79Ϊ·½³Ìx2-10x+16=0µÄÁ½¸ù£¬Ôò$\frac{{a}_{30}•{a}_{40}•{a}_{50}}{2}$µÄֵΪ£¨¡¡¡¡£©
A£®32B£®16C£®¡À32D£®¡À64

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬f£¨1£©=0£¬µ±x£¾0ʱ£¬ÓÐ$\frac{xf'£¨x£©-f£¨x£©}{x^2}£¾0$³ÉÁ¢£¬Ôò²»µÈʽx•f£¨x£©£¾0µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£©B£®£¨-1£¬0£©¡È£¨0£¬1£©C£®£¨1£¬+¡Þ£©D£®£¨-1£¬0£©¡È£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚ¡÷ABCÖУ¬¸ù¾ÝÏÂÁÐÌõ¼þ½âÈý½ÇÐΣº
£¨1£©c=$\sqrt{6}$£¬A=45¡ã£¬a=2£º
£¨2£©c=$\sqrt{2}$£¬A=45¡ã£¬a=2£º
£¨3£©c=3£¬A=45¡ã£¬a=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬»­³öÆ½ÃæACD1ÓëÆ½ÃæBDC1µÄ½»Ïߣ¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èôa£¼1£¬b£¾1£¬ÄÇôÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{a}$£¾$\frac{1}{b}$B£®$\frac{b}{a}$£¾1C£®a2£¼b2D£®ab£¼a+b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©Âú×㣺¢Ùf£¨x£©µÄ¶¨ÒåÓòΪR¢Ú¶ÔÈÎÒâm£¬n¡ÊR£¬ÓÐf£¨m+n£©+f£¨m-n£©=2f£¨m£©f£¨n£©¢Ûf£¨1£©=$\frac{3}{2}$£¬ÇóÖ¤£º
£¨1£©f£¨x£©ÊÇżº¯Êý£»
£¨2£©¶ÔÓÚÈÎÒâx¡ÊR£¬f£¨x£©¡Ý-1£»
£¨3£©f£¨10£©£¾f£¨9£©£¾¡­£¾f£¨2£©£¾f£¨1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈôOΪ¡÷ABCËùÔÚÆ½ÃæÄÚÒ»µã£¬ÇÒ3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+7$\overrightarrow{OC}$=$\overrightarrow{0}$£¬Ôò¡÷OABºÍ¡÷ABCµÄÃæ»ýÖ®±ÈΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{3}$C£®$\frac{1}{2}$D£®$\frac{2}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÉèÈ«¼¯U={1£¬2£¬3£¬4£¬5£¬6£¬7£¬8}£¬A={1£¬2£¬3}£¬B={3£¬4£¬5£¬6}£¬ÇóA¡ÈB£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸