精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在坐标原点,离心率e=
2
2
,且其中一个焦点与抛物线y=
1
4
x2
的焦点重合.
(1)求椭圆C的方程;
(2)过点S(-
1
3
,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.
分析:(1)先设处椭圆的标准方程,根据离心率求的a和c的关系,进而根据抛物线的焦点求得c,进而求得a,则b可得,进而求的椭圆的标准方程.
(2)若直线l与x轴重合,则以AB为直径的圆是x2+y2=1,若直线l垂直于x轴,则以AB为直径的圆是(x+
1
3
2+y2=
16
9
.联立两个圆的方程求得其交点的坐标,推断两圆相切,进而可判断因此所求的点T如果存在,只能是这个切点.证明时先看直线l垂直于x轴时,以AB为直径的圆过点T(1,0).再看直线l不垂直于x轴,可设出直线方程,与圆方程联立消去y,记点A(x1,y1),B(x2,y2),根据伟大定理求得x1+x2和x1x2的表达式,代入
TA
TB
的表达式中,求得
TA
TB
=0,进而推断TA⊥TB,即以AB为直径的圆恒过点T(1,0).
解答:解:(Ⅰ)设椭圆的方程为
x2
b2
+
y2
a2
=1(a>b>0)
,离心率e=
2
2
c
a
=
2
2
,抛物线y=
1
4
x2
的焦点为(0,1),所以c=1,a=
2
,b=1
,椭圆C的方程是x2+
y2
2
=1
(Ⅱ)若直线l与x轴重合,则以AB为直径的圆是x2+y2=1,若直线l垂直于x轴,则以AB为直径的圆是(x+
1
3
2+y2=
16
9

x2+y2=1
(x+
1
3
)
2
+y2=
16
9
解得
x=1
y=0
即两圆相切于点(1,0).
因此所求的点T如果存在,只能是(1,0).
事实上,点T(1,0)就是所求的点.证明如下:
当直线l垂直于x轴时,以AB为直径的圆过点T(1,0).
若直线l不垂直于x轴,可设直线l:y=k(x+
1
3
).
y=k(x+
1
3
)
x2+
y
2
2
=1
即(k2+2)x2+
2
3
k2x+
1
9
k2-2=0.
记点A(x1,y1),B(x2,y2),则
x1+x2=
-
2
3
k2
k2+2
x1x2=
1
9
k2-2
k2+2

又因为
TA
=(x1-1,y1),
TB
=(x2-1,y2),
TA
TB
=(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+
1
3
)(x2+
1
3

=(k2+1)x1x2+(
1
3
k2-1)(x1+x2)+
1
9
k2+1
=(k2+1)
1
9
k2-2
k2+2
+(
1
3
k2-1)
-
2
3
k2
k2+2
+
1
9
k2
+1=0,
所以TA⊥TB,即以AB为直径的圆恒过点T(1,0).
所以在坐标平面上存在一个定点T(1,0)满足条件
点评:本题主要考查了椭圆的标准方程和直线与椭圆的综合问题.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,椭圆C任意一点P到两个焦点F1(-
3
,0)
F2(
3
,0)
的距离之和为4.
(1)求椭圆C的方程;
(2)设过(0,-2)的直线l与椭圆C交于A、B两点,且
OA
OB
=0
(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,
32
)在椭圆C上.
(I)求椭圆C的方程;
(II)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2M⊥l,求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上且过点P(
3
1
2
)
,离心率是
3
2

(1)求椭圆C的标准方程;
(2)直线l过点E(-1,0)且与椭圆C交于A,B两点,若|EA|=2|EB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区一模)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为
1
2
,它的一个顶点恰好是抛物线y=
3
12
x2的焦点.
(I)求椭圆C的标准方程;
(II)若A、B是椭圆C上关x轴对称的任意两点,设P(-4,0),连接PA交椭圆C于另一点E,求证:直线BE与x轴相交于定点M;
(III)设O为坐标原点,在(II)的条件下,过点M的直线交椭圆C于S、T两点,求
OS
OT
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,它的一条准线为x=-
5
2
,离心率为
2
5
5

(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆于A、B两点,交y轴于M点,若
MA
=λ1
AF
, 
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

同步练习册答案