精英家教网 > 高中数学 > 题目详情

已知直线l过抛物线y24x的焦点F,交抛物线于AB两点,且点ABy轴的距离分别为mn,则mn2的最小值为(  )

A4 B6 C4 D6

 

C

【解析】因为mn2(m1)(n1)表示点AB到准线的距离之和,所以mn2表示焦点弦AB的长度,因为抛物线焦点弦的最小值是其通径的长度,所以mn2的最小值为4.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)仿真模拟卷2练习卷(解析版) 题型:填空题

已知F1F2是双曲线y21的两个焦点,点P在此双曲线上,·0,如果点Px轴的距离等于,那么该双曲线的离心率等于________

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷6练习卷(解析版) 题型:解答题

已知ABC三个箱子中各装有两个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从ABC三个箱子中各摸出一个球.

(1)若用数组(xyz)中的xyz分别表示从ABC三个箱子中摸出的球的号码,请写出数组(xyz)的所有情形,并回答一共有多少种;

(2)如果请您猜测摸出的这三个球的号码之和,猜中有奖.那么猜什么数获奖的可能性最大?请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷5练习卷(解析版) 题型:解答题

已知椭圆E1(ab0)F1(c,0)F2(c,0)为椭圆的两个焦点,M为椭圆上任意一点,且|MF1||F1F2||MF2|构成等差数列,点F2(c,0)到直线lx的距离为3.

(1)求椭圆E的方程;

(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点AB,且,求出该圆的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷5练习卷(解析版) 题型:填空题

在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1F2x轴上,离心率为.F1的直线lCAB两点,且ABF2的周长为16,那么C的方程为________

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷5练习卷(解析版) 题型:选择题

已知点M(ab)在圆Ox2y21外,则直线axby1与圆O的位置关系是(  )

A.相切 B.相交

C.相离 D.不确定

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷4练习卷(解析版) 题型:解答题

如图,四棱锥PABCD的底面ABCD是边长为2的菱形,BAD60°,已知PBPD2PA.

(1)证明:PCBD

(2)EPA的中点,求三棱锥PBCE的体积.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷3练习卷(解析版) 题型:解答题

在公差为d的等差数列{an}中,已知a110,且a1,2a22,5a3成等比数列.

(1)dan

(2)d0,求|a1||a2||a3||an|.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷1练习卷(解析版) 题型:解答题

设函数f(x)x3ax2axg(x)2x24xc.

(1)试问函数f(x)能否在x=-1时取得极值?说明理由;

(2)a=-1,当x[3,4]时,函数f(x)g(x)的图象有两个公共点,求c的取值范围.

 

查看答案和解析>>

同步练习册答案