19£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄËĸö¶¥µã·Ö±ðÊÇA1£¬A2£¬B1£¬B2£¬¡÷A2B1B2ÊDZ߳¤Îª2$\sqrt{3}$µÄÕýÈý½ÇÐΣ¬ÆäÄÚÇÐԲΪԲG£®
£¨1£©ÇóÍÖÔ²C¼°Ô²GµÄ±ê×¼·½³Ì£»
£¨2£©ÈôµãDÊÇÍÖÔ²CÉϵÚÒ»ÏóÏÞÄڵ͝µã£¬Ö±ÏßB1D½»Ïß¶ÎA2B2ÓÚµãE£®
£¨i£©Çó$\frac{|D{B}_{1}|}{|E{B}_{1}|}$µÄ×î´óÖµ£»
£¨ii£©ÉèF£¨-1£¬0£©£¬ÊÇ·ñ´æÔÚÒÔÍÖÔ²CÉϵĵãMΪԲÐĵÄÔ²M£¬Ê¹µÃ¹ýÔ²MÉÏÈÎÒâÒ»µãN£¬×÷Ô²GµÄÇÐÏߣ¨ÇеãΪT£©¶¼Âú×ã$\frac{|NF|}{|NT|}$=$\sqrt{2}$£¿Èô´æÔÚ£¬ÇëÇó³öÔ²MµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉ¡÷A2B1B2ÊDZ߳¤Îª2$\sqrt{3}$µÄÕýÈý½ÇÐΣ¬¿ÉµÃb=$\sqrt{3}$£¬$a=\sqrt{3}b$£¬¼´¿ÉµÃ³öÍÖÔ²CµÄ±ê×¼·½³Ì£®ÉèÄÚÇÐÔ²µÄ°ë¾¶Îªr£¬Ôò$r=\sqrt{3}tan3{0}^{¡ã}$£¬¼´¿ÉµÃ³öÄÚÇÐÔ²GµÄ±ê×¼·½³Ì£®
£¨2£©£©£¨i£©ÉèÖ±ÏßB1DµÄ·½³ÌΪ£ºy=kx-$\sqrt{3}$£¬$£¨k£¾\frac{\sqrt{3}}{3}£©$£®ÓëÍÖÔ²µÄ·½³ÌÁªÁ¢½âµÃD£¬¿ÉµÃ|DB1|£®Ö±ÏßA2B2µÄ·½³ÌΪ£º$\frac{x}{3}+\frac{y}{\sqrt{3}}=1$£¬Óëy=kx-$\sqrt{3}$ÁªÁ¢½âµÃE£®¿ÉµÃ|EB1|£®
¿ÉµÃ$\frac{|D{B}_{1}|}{|E{B}_{1}|}$=$\frac{3{k}^{2}+\sqrt{3}k}{1+3{k}^{2}}$£¬±äÐÎÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
£¨ii£©¼ÙÉè´æÔÚÒÔÍÖÔ²CÉϵĵãMΪԲÐĵÄÔ²M£¬Ê¹µÃ¹ýÔ²MÉÏÈÎÒâÒ»µãN£¬×÷Ô²GµÄÇÐÏߣ¨ÇеãΪT£©¶¼Âú×ã$\frac{|NF|}{|NT|}$=$\sqrt{2}$£®µ±ÇеãΪµãOʱ£¬ÓÉ$\frac{|NF|}{|NT|}$=$\sqrt{2}$£¬¿ÉµÃN£¨0£¬¡À1£©£¬Óɴ˿ɵÃÖ»ÓпÉÄÜM£¨¡À3£¬0£©£®ÆäÔ²MµÄ·½³ÌΪ£º£¨x-3£©2+y2=10£¬»ò£¨x+3£©2+y2=10£¨ÉáÈ¥£©£®Ö¤Ã÷¼´¿É£®

½â´ð ½â£º£¨1£©¡ß¡÷A2B1B2ÊDZ߳¤Îª2$\sqrt{3}$µÄÕýÈý½ÇÐΣ¬¡àb=$\sqrt{3}$£¬$a=\sqrt{3}b$=3£¬$c=\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{6}$£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1$£®
ÉèÄÚÇÐÔ²µÄ°ë¾¶Îªr£¬Ôò$r=\sqrt{3}tan3{0}^{¡ã}$=1£®
¡àÄÚÇÐÔ²GµÄ±ê×¼·½³ÌΪ£¨x-1£©2+y2=1£®
£¨2£©£¨i£©ÉèÖ±ÏßB1DµÄ·½³ÌΪ£ºy=kx-$\sqrt{3}$£¬$£¨k£¾\frac{\sqrt{3}}{3}£©$£®
ÁªÁ¢$\left\{\begin{array}{l}{{x}^{2}+3{y}^{2}=9}\\{y=kx-\sqrt{3}}\end{array}\right.$£¬»¯Îª$£¨1+3{k}^{2}£©{x}^{2}-6\sqrt{3}kx=0$£¬
½âµÃD$£¨\frac{6\sqrt{3}k}{1+3{k}^{2}}£¬\frac{3\sqrt{3}{k}^{2}-\sqrt{3}}{1+3{k}^{2}}£©$£¬
¡à|DB1|=$\sqrt{£¨\frac{6\sqrt{3}k}{1+3{k}^{2}}£©^{2}+£¨\frac{3\sqrt{3}{k}^{2}-\sqrt{3}}{1+3{k}^{2}}+\sqrt{3}£©^{2}}$=$\frac{6\sqrt{3}k\sqrt{1+{k}^{2}}}{1+3{k}^{2}}$£®
Ö±ÏßA2B2µÄ·½³ÌΪ£º$\frac{x}{3}+\frac{y}{\sqrt{3}}=1$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx-\sqrt{3}}\\{y=-\frac{\sqrt{3}}{3}x+\sqrt{3}}\end{array}\right.$£¬½âµÃE$£¨\frac{6}{1+\sqrt{3}k}£¬\frac{3k-\sqrt{3}}{1+\sqrt{3}k}£©$£®
¡à|EB1|=$\sqrt{£¨\frac{6}{1+\sqrt{3}k}£©^{2}+£¨\frac{3k-\sqrt{3}}{1+\sqrt{3}k}+\sqrt{3}£©^{2}}$=$\frac{6\sqrt{1+{k}^{2}}}{1+\sqrt{3}k}$£®
¡à$\frac{|D{B}_{1}|}{|E{B}_{1}|}$=$\frac{3{k}^{2}+\sqrt{3}k}{1+3{k}^{2}}$=$1+\frac{1}{£¨\sqrt{3}k-1£©+\frac{2}{\sqrt{3}k-1}+2}$¡Ü1+$\frac{1}{2\sqrt{£¨\sqrt{3}k-1£©•\frac{2}{\sqrt{3}k-1}}+2}$=$\frac{\sqrt{2}+1}{2}$£¬µ±ÇÒ½öµ±$k=\frac{\sqrt{2}+1}{\sqrt{3}}$ʱȡµÈºÅ£®
¡à$\frac{|D{B}_{1}|}{|E{B}_{1}|}$µÄ×î´óֵΪ$\frac{\sqrt{2}+1}{2}$£®
£¨ii£©¼ÙÉè´æÔÚÒÔÍÖÔ²CÉϵĵãMΪԲÐĵÄÔ²M£¬Ê¹µÃ¹ýÔ²MÉÏÈÎÒâÒ»µãN£¬×÷Ô²GµÄÇÐÏߣ¨ÇеãΪT£©¶¼Âú×ã$\frac{|NF|}{|NT|}$=$\sqrt{2}$£®
µ±ÇеãΪµãOʱ£¬ÓÉ$\frac{|NF|}{|NT|}$=$\sqrt{2}$£¬¿ÉµÃN£¨0£¬¡À1£©£¬Óɴ˿ɵÃÖ»ÓпÉÄÜM£¨¡À3£¬0£©£®
ÆäÔ²MµÄ·½³ÌΪ£º£¨x-3£©2+y2=10£¬»ò£¨x+3£©2+y2=10£¨ÉáÈ¥£©£®
ÏÂÃæÖ¤Ã÷£ºÉèN$£¨3+\sqrt{10}cos¦È£¬\sqrt{10}sin¦È£©$£¬
Ôò|NF|2-2|NT|2
=|NF|2-2£¨|NG|2-1£©
=$£¨4+\sqrt{10}cos¦È£©^{2}+10si{n}^{2}¦È$-2$[£¨2+\sqrt{10}cos¦È£©^{2}+10si{n}^{2}¦È-1]$
=16+10+8$\sqrt{10}$cos¦È-2$£¨13+4\sqrt{10}cos¦È£©$
=0£¬
¡à$|NF|=\sqrt{2}|NT|$£®
Òò´Ë´æÔÚÒÔÍÖÔ²CÉϵĵãM£¨3£¬0£©ÎªÔ²ÐĵÄÔ²M£¬ÆäÔ²MµÄ·½³ÌΪ£º£¨x-3£©2+y2=10£¬Ê¹µÃ¹ýÔ²MÉÏÈÎÒâÒ»µãN£¬×÷Ô²GµÄÇÐÏߣ¨ÇеãΪT£©¶¼Âú×ã$\frac{|NF|}{|NT|}$=$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢Ö±Ïß½»µãÎÊÌâ¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢Ô²µÄ²ÎÊý·½³ÌÓ¦Ó㬿¼²éÁË̽¾¿ÎÊÌâ½â¾ö·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÉèÆ½Ãæ¦ÁÓëÆ½Ãæ¦ÂÏཻÓÚÖ±Ïßm£¬Ö±Ïßl1ÔÚÆ½Ãæ¦ÁÄÚ£¬Ö±Ïßl2ÔÚÆ½Ãæ¦ÂÄÚ£¬ÇÒl2¡Ím£¬Ôò¡°l1¡Íl2¡±ÊÇ¡°¦Á¡Í¦Â¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Ä³¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ$\frac{8-¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÛÊÊýf£¨x£©=ex£¬x¡ÊR
£¨1£©ÇóÛÊÊýh£¨x£©=f£¨x£©-2xµÄ×îСֵ
£¨2£©Áîg£¨x£©=$\frac{f£¨x£©}{1+a{x}^{2}}$£¬a£¾0£¬Èôg£¨x£©ÔÚRÉÏΪµ¥µ÷ÛÊÊý£¬ÇóaµÄ·¶Î§
£¨3£©Ö¤Ã÷£ºÇúÏßy=f£¨x£©ÓëÇúÏßy=$\frac{1}{2}$x2+x+1ÓÐΨһ¹«¹²µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=logag£¨x£©£¨x¡ÊI£©£¬ÆäÖÐa£¾0ÇÒa¡Ù1£®
£¨¢ñ£©Èôº¯Êýf£¨x£©ÊÇÆæº¯Êý£¬ÊÔÖ¤Ã÷£º¶ÔÈÎÒâµÄx¡ÊI£¬ºãÓÐg£¨x£©•g£¨-x£©=1£»
£¨¢ò£©Èô¶ÔÓÚg£¨x£©=ax£¬º¯Êýf£¨x£©ÔÚÇø¼ä[1£¬2]ÉϵÄ×î´óÖµÊÇ2£¬ÊÔÇóʵÊýaµÄÖµ£»
£¨¢ó£©Éèg£¨x£©=ax2-x£¨x¡Ê[3£¬4]£©ÇÒ0£¼a£¼1£¬ÎÊ£ºÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃ¶ÔÈÎÒâµÄx1£¬x2¡Ê[3£¬4]£¬¶¼ÓÐf£¨x1£©£¾${a}^{{x}_{2}-3}$£¿Èç¹û´æÔÚ£¬ÇëÇó³öaµÄȡֵ·¶Î§£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=lnx-x-lna£¨x£¾0£©£¬ÆäÖÐa£¾0
£¨1£©Çóº¯Êýh£¨x£©=f£¨x£©+$\frac{1}{2}{x^2}$-ax+£¨a-1£©lnxµÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èôº¯Êýf£¨x£©ÓÐÁ½¸öÁãµãx1£¬x2£¬ÇÒx1£¼x2£¬ÇóʵÊýaµÄȡֵ·¶Î§£¬²¢Ö¤Ã÷$\frac{x_2}{x_1}$ËæaµÄÔö´ó¶ø¼õС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÁ½¶¯Ô²${F_1}£º{£¨x+\sqrt{3}£©^2}+{y^2}={r^2}$ºÍ${F_2}£º{£¨x-\sqrt{3}£©^2}+{y^2}={£¨4-r£©^2}$£¨0£¼r£¼4£©£¬°ÑËüÃǵĹ«¹²µãµÄ¹ì¼£¼ÇΪÇúÏßC£¬ÈôÇúÏßCÓëyÖáµÄÕý°ëÖáµÄ½»µãΪM£¬ÇÒÇúÏßCÉϵÄÏàÒìÁ½µãA¡¢BÂú×㣺$\overrightarrow{MA}•\overrightarrow{MB}$=0£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£»
£¨2£©Ö¤Ã÷Ö±ÏßABºã¾­¹ýÒ»¶¨µã£¬²¢Çó´Ë¶¨µãµÄ×ø±ê£»
£¨3£©Çó¡÷ABMÃæ»ýSµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}+2014x-2015£¬x¡Ü0}\\{2-x+lnx£¬x£¾0}\end{array}\right.$£¬Ôòº¯Êýf£¨x£©µÄÁãµã¸öÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Ä³ËÄÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃËÄÀâ×¶µÄ²àÃæ»ýΪ2$\sqrt{39}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸