·ÖÎö £¨1£©ÓÉ¡÷A2B1B2ÊDZ߳¤Îª2$\sqrt{3}$µÄÕýÈý½ÇÐΣ¬¿ÉµÃb=$\sqrt{3}$£¬$a=\sqrt{3}b$£¬¼´¿ÉµÃ³öÍÖÔ²CµÄ±ê×¼·½³Ì£®ÉèÄÚÇÐÔ²µÄ°ë¾¶Îªr£¬Ôò$r=\sqrt{3}tan3{0}^{¡ã}$£¬¼´¿ÉµÃ³öÄÚÇÐÔ²GµÄ±ê×¼·½³Ì£®
£¨2£©£©£¨i£©ÉèÖ±ÏßB1DµÄ·½³ÌΪ£ºy=kx-$\sqrt{3}$£¬$£¨k£¾\frac{\sqrt{3}}{3}£©$£®ÓëÍÖÔ²µÄ·½³ÌÁªÁ¢½âµÃD£¬¿ÉµÃ|DB1|£®Ö±ÏßA2B2µÄ·½³ÌΪ£º$\frac{x}{3}+\frac{y}{\sqrt{3}}=1$£¬Óëy=kx-$\sqrt{3}$ÁªÁ¢½âµÃE£®¿ÉµÃ|EB1|£®
¿ÉµÃ$\frac{|D{B}_{1}|}{|E{B}_{1}|}$=$\frac{3{k}^{2}+\sqrt{3}k}{1+3{k}^{2}}$£¬±äÐÎÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
£¨ii£©¼ÙÉè´æÔÚÒÔÍÖÔ²CÉϵĵãMΪԲÐĵÄÔ²M£¬Ê¹µÃ¹ýÔ²MÉÏÈÎÒâÒ»µãN£¬×÷Ô²GµÄÇÐÏߣ¨ÇеãΪT£©¶¼Âú×ã$\frac{|NF|}{|NT|}$=$\sqrt{2}$£®µ±ÇеãΪµãOʱ£¬ÓÉ$\frac{|NF|}{|NT|}$=$\sqrt{2}$£¬¿ÉµÃN£¨0£¬¡À1£©£¬Óɴ˿ɵÃÖ»ÓпÉÄÜM£¨¡À3£¬0£©£®ÆäÔ²MµÄ·½³ÌΪ£º£¨x-3£©2+y2=10£¬»ò£¨x+3£©2+y2=10£¨ÉáÈ¥£©£®Ö¤Ã÷¼´¿É£®
½â´ð ½â£º£¨1£©¡ß¡÷A2B1B2ÊDZ߳¤Îª2$\sqrt{3}$µÄÕýÈý½ÇÐΣ¬¡àb=$\sqrt{3}$£¬$a=\sqrt{3}b$=3£¬$c=\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{6}$£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1$£®
ÉèÄÚÇÐÔ²µÄ°ë¾¶Îªr£¬Ôò$r=\sqrt{3}tan3{0}^{¡ã}$=1£®
¡àÄÚÇÐÔ²GµÄ±ê×¼·½³ÌΪ£¨x-1£©2+y2=1£®
£¨2£©£¨i£©ÉèÖ±ÏßB1DµÄ·½³ÌΪ£ºy=kx-$\sqrt{3}$£¬$£¨k£¾\frac{\sqrt{3}}{3}£©$£®
ÁªÁ¢$\left\{\begin{array}{l}{{x}^{2}+3{y}^{2}=9}\\{y=kx-\sqrt{3}}\end{array}\right.$£¬»¯Îª$£¨1+3{k}^{2}£©{x}^{2}-6\sqrt{3}kx=0$£¬
½âµÃD$£¨\frac{6\sqrt{3}k}{1+3{k}^{2}}£¬\frac{3\sqrt{3}{k}^{2}-\sqrt{3}}{1+3{k}^{2}}£©$£¬
¡à|DB1|=$\sqrt{£¨\frac{6\sqrt{3}k}{1+3{k}^{2}}£©^{2}+£¨\frac{3\sqrt{3}{k}^{2}-\sqrt{3}}{1+3{k}^{2}}+\sqrt{3}£©^{2}}$=$\frac{6\sqrt{3}k\sqrt{1+{k}^{2}}}{1+3{k}^{2}}$£®
Ö±ÏßA2B2µÄ·½³ÌΪ£º$\frac{x}{3}+\frac{y}{\sqrt{3}}=1$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx-\sqrt{3}}\\{y=-\frac{\sqrt{3}}{3}x+\sqrt{3}}\end{array}\right.$£¬½âµÃE$£¨\frac{6}{1+\sqrt{3}k}£¬\frac{3k-\sqrt{3}}{1+\sqrt{3}k}£©$£®
¡à|EB1|=$\sqrt{£¨\frac{6}{1+\sqrt{3}k}£©^{2}+£¨\frac{3k-\sqrt{3}}{1+\sqrt{3}k}+\sqrt{3}£©^{2}}$=$\frac{6\sqrt{1+{k}^{2}}}{1+\sqrt{3}k}$£®
¡à$\frac{|D{B}_{1}|}{|E{B}_{1}|}$=$\frac{3{k}^{2}+\sqrt{3}k}{1+3{k}^{2}}$=$1+\frac{1}{£¨\sqrt{3}k-1£©+\frac{2}{\sqrt{3}k-1}+2}$¡Ü1+$\frac{1}{2\sqrt{£¨\sqrt{3}k-1£©•\frac{2}{\sqrt{3}k-1}}+2}$=$\frac{\sqrt{2}+1}{2}$£¬µ±ÇÒ½öµ±$k=\frac{\sqrt{2}+1}{\sqrt{3}}$ʱȡµÈºÅ£®
¡à$\frac{|D{B}_{1}|}{|E{B}_{1}|}$µÄ×î´óֵΪ$\frac{\sqrt{2}+1}{2}$£®
£¨ii£©¼ÙÉè´æÔÚÒÔÍÖÔ²CÉϵĵãMΪԲÐĵÄÔ²M£¬Ê¹µÃ¹ýÔ²MÉÏÈÎÒâÒ»µãN£¬×÷Ô²GµÄÇÐÏߣ¨ÇеãΪT£©¶¼Âú×ã$\frac{|NF|}{|NT|}$=$\sqrt{2}$£®
µ±ÇеãΪµãOʱ£¬ÓÉ$\frac{|NF|}{|NT|}$=$\sqrt{2}$£¬¿ÉµÃN£¨0£¬¡À1£©£¬Óɴ˿ɵÃÖ»ÓпÉÄÜM£¨¡À3£¬0£©£®
ÆäÔ²MµÄ·½³ÌΪ£º£¨x-3£©2+y2=10£¬»ò£¨x+3£©2+y2=10£¨ÉáÈ¥£©£®
ÏÂÃæÖ¤Ã÷£ºÉèN$£¨3+\sqrt{10}cos¦È£¬\sqrt{10}sin¦È£©$£¬
Ôò|NF|2-2|NT|2
=|NF|2-2£¨|NG|2-1£©
=$£¨4+\sqrt{10}cos¦È£©^{2}+10si{n}^{2}¦È$-2$[£¨2+\sqrt{10}cos¦È£©^{2}+10si{n}^{2}¦È-1]$
=16+10+8$\sqrt{10}$cos¦È-2$£¨13+4\sqrt{10}cos¦È£©$
=0£¬
¡à$|NF|=\sqrt{2}|NT|$£®
Òò´Ë´æÔÚÒÔÍÖÔ²CÉϵĵãM£¨3£¬0£©ÎªÔ²ÐĵÄÔ²M£¬ÆäÔ²MµÄ·½³ÌΪ£º£¨x-3£©2+y2=10£¬Ê¹µÃ¹ýÔ²MÉÏÈÎÒâÒ»µãN£¬×÷Ô²GµÄÇÐÏߣ¨ÇеãΪT£©¶¼Âú×ã$\frac{|NF|}{|NT|}$=$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢Ö±Ïß½»µãÎÊÌâ¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢Ô²µÄ²ÎÊý·½³ÌÓ¦Ó㬿¼²éÁË̽¾¿ÎÊÌâ½â¾ö·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com