分析 根据几何体的三视图,得出该几何体是底面为菱形的四棱锥,画出几何体的直观图,求出它的侧面积即可.
解答
解:根据几何体的三视图,得;
该几何体是底面为菱形的四棱锥,
且菱形的边长为$\sqrt{{(\sqrt{3})}^{2}{+1}^{2}}$=2,
三棱锥的高为3,
且侧面四个三角形的面积相等,如图所示;
∴该四棱锥的侧面积为
4S△PAB=4×$\frac{1}{2}$AB•PE=4×$\frac{1}{2}$×2×$\sqrt{{3}^{2}{+(\frac{\sqrt{3}×1}{2})}^{2}}$=2$\sqrt{39}$.
故答案为:2$\sqrt{39}$.
点评 本题考查了利用空间几何体的三视图求几何体的侧面积的应用问题,解题的关键是根据三视图得出几何体的直观图,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{29}{36}$ | B. | $\frac{29}{36}$ | C. | $\frac{11}{24}$ | D. | $-\frac{11}{24}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com