精英家教网 > 高中数学 > 题目详情
20.如图,△ACB,△ADC都为等腰直角三角形,M为AB的中点,且平面ADC⊥平面ACB,AB=4,AC=2$\sqrt{2}$,AD=2
(1)求证:BC⊥平面ACD
(2)求直线MD与平面ADC所成的角.

分析 (1)根据所给边的长度和△ACB,ADC都为等腰直角三角形即可知道∠ADC=90°,BC⊥AC,而根据平面ADC⊥平面ACB即可得到BC⊥平面ACD;
(2)取AC中点E,连接ME,DE,便容易说明∠EDM是直线MD与平面ADC所成的角,由已知条件即知ME=DE=$\sqrt{2}$,从而得到∠EDM=45°.

解答 解:(1)证明:根据已知条件便知∠ADC=90°,∠ACB=90°;
∴BC⊥AC;
∵平面ADC⊥平面ACB,平面ADC∩平面ACB=AC;
∴BC⊥平面ACD;
(2)如图,取AC中点E,连接ME,DE,∵M为AB中点,则:
ME∥BC,ME=$\sqrt{2}$,DE=$\sqrt{2}$;
由(1)BC⊥平面ACD;
∴ME⊥平面ACD;
∴∠MDE为直线MD和平面ADC所成角;
∴在Rt△MDE中,直角边ME=DE;
∴∠MDE=45°;
即直线MD与平面ADC所成的角为45°.

点评 考查直角三角形边的关系,面面垂直的性质定理,以及中位线的性质,线面角的概念及求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.某空间几何体的三视图如图所示,则该几何体的体积为$\frac{8-π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知两动圆${F_1}:{(x+\sqrt{3})^2}+{y^2}={r^2}$和${F_2}:{(x-\sqrt{3})^2}+{y^2}={(4-r)^2}$(0<r<4),把它们的公共点的轨迹记为曲线C,若曲线C与y轴的正半轴的交点为M,且曲线C上的相异两点A、B满足:$\overrightarrow{MA}•\overrightarrow{MB}$=0.
(1)求曲线C的方程;
(2)证明直线AB恒经过一定点,并求此定点的坐标;
(3)求△ABM面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+2014x-2015,x≤0}\\{2-x+lnx,x>0}\end{array}\right.$,则函数f(x)的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a、b、c分别是△ABC的三个内角∠A、∠B、∠C的对边,acosB+$\frac{1}{2}$b=c.
(1)求∠A的大小;
(2)若等差数列{an}中,a1=2cosA,a5=9,设数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Sn,求证:Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是一个几何体的三视图,其中正(主)视图、侧(左)视图都是矩形,则该几何体的体积是(  )
A.24B.18C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线y=x+4与曲线y=x2-x+1所围成的封闭图形的面积为(  )
A.$\frac{22}{3}$B.$\frac{28}{3}$C.$\frac{32}{3}$D.$\frac{34}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某四棱锥的三视图如图所示,则该四棱锥的侧面积为2$\sqrt{39}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(  )
A.$\frac{π}{3}$cm3B.$\frac{2π}{3}$cm3C.πcm3D.$\frac{4π}{3}$cm3

查看答案和解析>>

同步练习册答案