精英家教网 > 高中数学 > 题目详情
12.设x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{3x-y≥1}\\{y≥x+1}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最小值为2,求ab的值与z的最大值.

分析 作出不等式对应的平面区域,利用z的几何意义确定取得最小值的条件,然后利用基本不等式进行求ab的值与z的最大值.

解答 解:由z=ax+by(a>0,b>0)得$y=-\frac{a}{b}x+\frac{z}{b}$,
∵a>0,b>0,
∴直线的斜率$-\frac{a}{b}<0$,
作出不等式对应的平面区域如图:
平移直线得$y=-\frac{a}{b}x+\frac{z}{b}$,由图象可知当直线$y=-\frac{a}{b}x+\frac{z}{b}$经过点A时,直线$y=-\frac{a}{b}x+\frac{z}{b}$的截距最小,此时z最小.
由$\left\{\begin{array}{l}{x=2}\\{y=x+1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3),
此时目标函数z=ax+by(a>0,b>0)的最小值为2,
即2a+3b=2,∴2=2a+3b$≥2\sqrt{6ab}$,
即ab≤$\frac{1}{6}$,
当且仅当2a=3b=1,即a=$\frac{1}{2}$,b=$\frac{1}{3}$时取等号.
故ab的最大值为$\frac{1}{6}$,z无最大值.

点评 本题主要考查线性规划的基本应用,以及基本不等式的应用,利用数形结合求出目标函数取得最大值的条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知某空间几何体的三视图如图所示,则该几何体的体积是(  )
A.16B.32C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.通过计算高中生的性别与喜欢唱歌列联表中德数据,得到K2≈4.98,并且已知P(K2≥3.84)≈0.05,那么可以得到的结论是在犯错误率不超过0.05的情况下,认为高中生的性别与喜欢唱歌有关.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知AB∥EF,AC∥EG,∠BAC=60°,则∠FEG=60°或120°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知-1<a<2,0<b<5,a+b的取值范围是区间A,a-b的取值范围是区间B,则A∩B=(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等比数列{an}前n项和Sn=5n-1,则a12+a22+a32+…+an2等于(  )
A.(5n-1)2B.52n-1C.$\frac{2}{3}$(52n+1+1)D.$\frac{2}{3}$(52n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式(x2-1)(x+1)≤0的解集为(  )
A.(-∞,-1]B.(-∞,-1)C.(-∞,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设i是虚数单位,复数$\frac{5}{2-i}$的虚部为(  )
A.-iB.-1C.iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点 F 是抛物线 y2=4x的焦点,M、N 是该抛物线上两点,|MF|+|NF|=6,则 MN中点的横坐标为(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

同步练习册答案