精英家教网 > 高中数学 > 题目详情
1.如图所示,已知椭圆$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{25}$=1的上顶点为A,直线y=-4交椭圆于点B,C(点B在点C的左侧)点P在椭圆上,若四边形ABCP为梯形,求:
(1)椭圆的焦点坐标;
(2)直线CP的方程;
(3)梯形ABCP的面积.

分析 (1)求得椭圆的a,b,c,即可得到所求焦点坐标;
(2)求得A,B,C的坐标和AB的斜率,由两直线平行的条件:斜率相等,运用点斜式方程,可得CP的方程;
(3)将CP的方程代入椭圆方程,求得P的坐标,由两点的距离公式和点到直线的距离公式,运用梯形的面积公式计算即可得到所求值.

解答 解:(1)椭圆$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{25}$=1的a=10,b=5,c=$\sqrt{{a}^{2}-{b}^{2}}$=5$\sqrt{3}$,
可得焦点坐标为(±5$\sqrt{3}$,0);
(2)由题意可得A(0,5),
令y=-4,代入椭圆方程x2+4y2=100,可得x=±6,
即有B(-6,-4),C(6,-4),
由AB∥CP,kAB=$\frac{3}{2}$,可得直线CP的方程为y+4=$\frac{3}{2}$(x-6),
即为y=$\frac{3}{2}$x-13;
(3)由y=$\frac{3}{2}$x-13,代入椭圆方程x2+4y2=100,可得
5x2-78x+288=0,
解得x=6或$\frac{48}{5}$,
可得P($\frac{48}{5}$,$\frac{7}{5}$),
即有|AB|=3$\sqrt{13}$,|CP|=$\sqrt{\frac{1{8}^{2}}{25}+\frac{2{7}^{2}}{25}}$=$\frac{9\sqrt{13}}{5}$,
点A到直线CP的距离为d=$\frac{|0-5-13|}{\sqrt{1+\frac{9}{4}}}$=$\frac{36}{\sqrt{13}}$,
则梯形ABCP的面积为$\frac{1}{2}$•$\frac{36}{\sqrt{13}}$•(3$\sqrt{13}$+$\frac{9\sqrt{13}}{5}$)
=$\frac{432}{5}$.

点评 本题考查椭圆的方程和性质,考查直线方程的运用,以及直线和椭圆方程联立,解交点,运用两点的距离公式和点到直线的距离公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.2016年微信宣布:微信朋友圈除夕前后10天的所有广告收入,均将变为免费红包派送至全国网民的口袋,金额至少达到9位数.某商业调查公司对此进行了问卷调查,其中男性500人,女性400人,为了了解性别对“抢红包”的喜爱程度的影响,采用分层抽样方法从中抽取了45人的测评结果,并作出频数统计表如下:
表1:男性     
等级喜欢一般不喜欢
频数15x5
表2:女性
等级喜欢一般不喜欢
频数153y
(Ⅰ)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“喜欢抢红包与性别有关”;
男性女性总计
喜欢
非喜欢
总计
参考数据与公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.100.050.01
k02.7063.8416.635
临界值表:
(Ⅱ)若从样本中的女性中随机抽取3人,求恰有2人非喜欢的概率;
(Ⅲ)若以样本的频率估计概率,从参加调查问卷的人中随机抽取2名男性和1名女性,求其中非喜欢的人数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函败f(x)=2cos2x-1+cos2x•tan2x可以写成f(x)=Asin(2x+$\frac{π}{4}$)(A>0)的形式,则正数A=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=αcosx+bsinx,其中a、b为实常数,若存在x1,x2,当x1-x2≠kπ(k∈z)时,有|f(x1)|+|f(x2)|=0成立,则函数f(x)的值域为[-$\sqrt{{a}^{2}{+b}^{2}}$,$\sqrt{{a}^{2}{+b}^{2}}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若实数x、y满足不等式组$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,且z=ax+y仅在点P(-$\frac{5}{2}$,$\frac{5}{2}$)处取得最小值,则a的取值范围为(  )
A.0<a<1B.a>1C.a≥1D.a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若$\overrightarrow{O{F}_{1}}$=(2,2),$\overrightarrow{O{F}_{2}}$=(-2,3)分别表示F1,F2,则|F1+F2|=(  )
A.(0,5)B.25C.2$\sqrt{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.将5本不同的书分给4名学生,每人至少分1本,则不同的分法有240种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点为F,不垂直于x轴且不过F点的直线l与椭圆C交于M,N两点,若∠MFN的外角平分线与直线MN交于点P,则P点的横坐标为(  )
A.2$\sqrt{3}$B.$\frac{4}{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示.为了得到g(x)=-Acosωx(A>0,ω>0)的图象,可以将f(x)的图象(  )
A.向右平移$\frac{π}{12}$个单位长度B.向右平移$\frac{5π}{12}$个单位长度
C.向左平移$\frac{π}{12}$个单位长度D.向左平移$\frac{5π}{12}$个单位长度

查看答案和解析>>

同步练习册答案