精英家教网 > 高中数学 > 题目详情
1.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示.为了得到g(x)=-Acosωx(A>0,ω>0)的图象,可以将f(x)的图象(  )
A.向右平移$\frac{π}{12}$个单位长度B.向右平移$\frac{5π}{12}$个单位长度
C.向左平移$\frac{π}{12}$个单位长度D.向左平移$\frac{5π}{12}$个单位长度

分析 由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f(x)的解析式.再根据函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:由题意可得A=1,$\frac{1}{4}$T=$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,解得ω=2,
∴f(x)=Asin(ωx+φ)=sin(2x+φ).π
再由五点法作图可得 2×$\frac{π}{3}$+φ=0,∴φ=-$\frac{2π}{3}$,π
∴f(x)=sin(2x-$\frac{2π}{3}$)=sin2(x-$\frac{π}{3}$),
g(x)=-cos2x=sin(2x+$\frac{π}{2}$)=sin2(x+$\frac{π}{4}$),
而$\frac{π}{3}$-(-$\frac{π}{12}$)=$\frac{5π}{12}$,
故将f(x)的图象向左平移$\frac{5π}{12}$个单位长度,即可得到函数g(x)的图象,
故选:D.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图所示,已知椭圆$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{25}$=1的上顶点为A,直线y=-4交椭圆于点B,C(点B在点C的左侧)点P在椭圆上,若四边形ABCP为梯形,求:
(1)椭圆的焦点坐标;
(2)直线CP的方程;
(3)梯形ABCP的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}中,a1=3,an+1-2an=0,数列{bn}的通项bn满足关系式anbn=(-1)n(n∈N),则b3=-$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简:$\frac{sin(2π-α)tan(α+π)tan(-α-π)}{cos(π-α)tan(3π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\frac{3π}{2}$<θ<2π,化简:$\sqrt{1+sinθ}$-$\sqrt{1-sinθ}$=-2sin$\frac{θ}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z满足z=(1+i)(2-i)i(其中i为虚数单位),则$\overrightarrow{z}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在平面直角坐标系中,P(3,-4)为角α的终边上一点,则sin(α+$\frac{π}{4}$)=(  )
A.$\frac{\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{7\sqrt{2}}{10}$D.-$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=1+i,则$|{\frac{{\sqrt{2}i}}{z}}|$=(  )
A.1B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=sin(2x+φ)的图象沿x轴向左平移$\frac{π}{8}$个单位后,得到一个偶函数的图象,设φ取最小正值时所得偶函数为g(x),则函数y=x2g(x)的部分图象可以为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案