精英家教网 > 高中数学 > 题目详情
15.某种商品价格与该商品日需求量之间的几组对照数据如表:
价格x(元/kg)1015202530
日需求量y(kg)1110865
(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)当价格x=40元/kg时,日需求量y的预测值为多少?

分析 (I)根据回归系数公式计算回归系数,得出回归方程;
(II)把x=40,代入回归方程解出y即可.

解答 解:(Ⅰ)$\overline x=\frac{1}{5}({10+15+20+25+30})=20$,(1分)
$\overline y=\frac{1}{5}({11+10+8+6+5})=8$,(2分)
$\sum_{i=1}^5{{{({{x_i}-\overline x})}^2}={{({-10})}^2}+{{({-5})}^2}+{0^2}+{5^2}+{{10}^2}=250}$,(3分)
$\sum_{i=1}^5{({{x_i}-\overline x})({{y_i}-\overline y})=}$-10×3+(-5)×2+0×0+5×(-2)+10×(-3)=-80.(4分)
$b=\frac{{\sum_{i=1}^5{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^5{{{({{x_i}-\overline x})}^2}}}}=\frac{-80}{250}=-0.32$.(6分)$a=\overline y-b\overline x=8+0.32×20=14.4$.(8分)
所求线性回归方程为$\widehaty=-0.32x+14.4$.(9分)
(Ⅱ)由(Ⅰ)知当x=40时,$\widehaty=-0.32×40+14.4=1.6$.(11分)
故当价格x=40元/kg时,日需求量y的预测值为1.6kg.(12分)

点评 本题考查线性回归方程,解题的关键是利用最小二乘法写出线性回归系数,注意解题的运算过程不要出错,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.对两个分类变量A,B的下列说法中正确的个数为(  )
①A与B无关,即A与B互不影响;
②A与B关系越密切,则K2的值就越大;
③K2的大小是判定A与B是否相关的唯一依据.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cosα=$\frac{1}{3}$,cos(α+β)=-$\frac{1}{3}$,且α,β∈(0,$\frac{π}{2}$),则cosβ=$\frac{7}{9}$,2α+β=π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线y=3x+1绕其与y轴的交点逆时针旋转900所得到的直线方程为  x+3y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.等比数列{an}的各项均为正数,且a2-a1=6,9a32=a2a6
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log3a1+log3a2+…+log3an,数列{$\frac{1}{b_n}$}的前n项和Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在棱长为1的正方体ABCDA1B1C1D1中,E为棱BC的中点,点F是棱CD上的动点,试确定点F的位置,使得D1E⊥平面AB1F.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线经过点A(6,-4),斜率为-$\frac{4}{3}$,求直线的点斜式和一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从3男1女共4名学生中选出2人参加学校组织的环保活动,则女生被选中的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,PA⊥平面ABCD,AB⊥AD,AD∥BC,PA=AB=BC,AD=2AB,点M,N分别在PB,PC上,且MN∥BC.
(Ⅰ)证明:平面AMN⊥平面PBA;
(Ⅱ)若M为PB的中点,求二面角M-AC-D的余弦值.

查看答案和解析>>

同步练习册答案