精英家教网 > 高中数学 > 题目详情

【题目】一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料的主要原料是磷酸盐1吨、硝酸盐15吨,现库存磷酸盐10吨、硝酸盐66吨,在此基础上生产这两种混合肥料。如果生产1车皮甲种肥料,产生的利润为12000元;生产1车皮乙种肥料,产生的利润为7000元。那么可产生最大的利润是__________元.

【答案】38000元

【解析】x、y分别表示计划生产甲、乙两种肥料的车皮数.

由题意,得

工厂的总利润z=12000x+7000y

由约束条件得可行域如图,

,解得:

所以最优解为A(2,2),

则当直线12000x+7000y﹣z=0过点A(2,2)时,

z取得最大值为:38000元,即生产甲、乙两种肥料各2车皮时可获得最大利润.

故答案为38000元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表如下,频率分布直方图如图:

分组

频数

频率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,过抛物线上一定点,作两条直线分别交抛物线于

(1)求该抛物线上纵坐标为的点到其焦点的距离;

(2)的斜率存在且倾斜角互补时,求的值,并证明直线的斜率是非零常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,记函数的极小值为,若恒成立,求满足条件的最小整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知由自然数组成的元集合,非空集合,且对任意的,都有.

(1)时,求所有满足条件的集合;

(2)时,求所有满足条件的集合的元素总和;

(3)定义一个集合的交替和如下:按照递减的次序重新排列该集合的元素,然后从最大数开始交替地减、加后继的数.例如集合的交替和是,集合的交替和为.时,求所有满足条件的集合交替和的总和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是满足下述条件的所有函数组成的集合:对于函数定义域内的任意两个自变量,均有成立.

(1)已知定义域为的函数,求实数的取值范围;

(2)设定义域为的函数,且,求正实数的取值范围;

(3)已知函数的定义域为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:Cx=若不建隔热层,每年能源消耗费用为8万元。设fx)为隔热层建造费用与20年的能源消耗费用之和。

)求k的值及f(x)的表达式。

)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处有极小值,则实数等于__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对称轴为坐标轴的椭圆的焦点为上.

(1)求椭圆的方程;

(2)设不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,则当的面积为时,求直线的方程.

查看答案和解析>>

同步练习册答案