精英家教网 > 高中数学 > 题目详情

若数列满足:存在正整数,对于任意正整数都有成立,则称数列为周期数列,周期为. 已知数列满足现给出以下命题:

①若,则可以取3个不同的值

②若,则数列是周期为的数列

,存在是周期为的数列

,数列是周期数列.其中所有真命题的序号是 .

 

①②③

【解析】对于①,根据条件,当m>2时,有a2=m-1>1,a3=m-2,于是m-2=4,有m=6满足条件;当m∈(1,2]时,有a2=m-1∈(0,1],则a3=,于是=4,m=满足条件;若m=1,则an=1恒成立,不可能有a3=4,当m∈(0,1)时,有a2=>1,a3=-1,于是-1=4,m=满足条件.故①正确.

对于②,逐个推导可得:a1=,a2=-1,a3=,a4=, 是周期为3的周期数列.故②正确

对于③,要想使得{an}是周期为T的周期数列,因为m>1,故只需使得aT=,则aT+1=m,而m>1,可使得aT=m-(T-1),即m-(T-1)=,于是m2-(T-1)m-1=0,该关于m的方程两根之积为-1,必为异号两根,而根之和为T-1≥1,故其正根m必定大于1,满足条件,故③正确;

对于④,仿照③可知,当T=1时,m=1不满足条件

当T∈N*且T≥2时,若m为整数,则必定在若干项以后出现an=1,之后成为常数数列,不合题意,

故m为非整数,且m=(舍负),

要使得m∈Q,则必为有理数(且为整数),令其为n,且T-1+n不是偶数,否则m为整数,即T+n是偶数,所以,T与n同奇或同偶

由T2-2T+5=n2知,T与n不能同为偶数,

当T为奇数时,T2是奇数,等式左边是偶数,这与n2为奇数矛盾

综上,这样的条件不可能满足.故④错误

考点:分段数列,周期性,数列综合问题

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线
x=
3
2
t
y=1+
1
2
t
(t为参数)与抛物线x2=y交于A、B两点,则线段AB的长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,曲线C1的参数方程是
x=2+2cosθ
y=2sinθ
(θ为参数).
(Ⅰ)将C1的方程化为普通方程;
(Ⅱ)以O为极点,x轴的正半轴为极轴建立极坐标系.设曲线C2的极坐标方程是θ=
π
3
(ρ∈R),求曲线C1与C2交点的极坐标.

查看答案和解析>>

科目:高中数学 来源:2015届四川省成都市新都区高三诊断测试理科数学试卷(解析版) 题型:选择题

已知全集U=R,集合A={x|x2-2x<0},B={x|x-1≥0},那么集合A∩?UB=( )

A.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}

 

查看答案和解析>>

科目:高中数学 来源:2015届四川省成都市高三10月考理科数学试卷(解析版) 题型:选择题

为了得到函数的图象,只需把函数的图象上所有的点( )

A.向右平行移动个单位长度

B.向左平行移动个单位长度

C.向左平行移动个单位长度

D.向右平行移动个单位长度

 

查看答案和解析>>

科目:高中数学 来源:2015届四川省成都市高三10月考文科数学试卷(解析版) 题型:选择题

已知数列{an},若点{n,an}(n∈N*)在直线y+2=k(x﹣5)上,则数列{an}的前9项和S9=( )

A.18 B.﹣45 C.22 D.﹣18

 

查看答案和解析>>

科目:高中数学 来源:2015届四川省成都实验外国语高三11月月考理科数学试卷(解析版) 题型:解答题

设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,)在椭圆上.

(1)求椭圆E的方程;

(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围.

(3)过M()的直线:与过N()的直线:的交点P()在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求的值.

 

查看答案和解析>>

科目:高中数学 来源:2015届四川省成都实验外国语高三11月月考理科数学试卷(解析版) 题型:选择题

对于三次函数,给出定义:设是函数的导数,的导数,若方程有实数解,则称点为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数,则=( )

A. 2011 B. 2012 C. 2013 D. 2014

 

查看答案和解析>>

科目:高中数学 来源:2015届四川省成都实验外国语高三11月月考理科数学试卷(解析版) 题型:选择题

若集合,N={x|y=},则=( )

A. B. C. D.

 

查看答案和解析>>

同步练习册答案