精英家教网 > 高中数学 > 题目详情
14.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,则堆放的米约有22斛(结果精确到个位).

分析 根据米堆的底部的弧度即底面圆周的四分之一为8尺,可求出圆锥的底面半径,从而计算出米堆的体积,用体积除以每斛的体积即可求得斛数.

解答 解:设米堆所在圆锥的底面半径为r尺,
则$\frac{1}{4}$×2πr=8,
解得:r=$\frac{16}{π}$
所以米堆的体积为V=$\frac{1}{4}$×$\frac{1}{3}$×πr2×5≈35.56,
所以米堆的斛数是$\frac{35.56}{1.62}$≈22,
故答案为22.

点评 考查了圆锥的计算及弧长的计算,解题的关键是从实际问题中抽象出圆锥的知识,难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知f(x)、g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=axg(x)(a>0,且a≠1),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,若数列 {$\frac{f(n)}{g(n)}$}的前n项和大于62,则n的最小值(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\frac{3}{2}{x^2}-2ax({a>0})$与g(x)=a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为(  )
A.$\frac{1}{{2{e^2}}}$B.$\frac{1}{2}{e^2}$C.$\frac{1}{e}$D.$-\frac{3}{{2{e^2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=\frac{ln|x|}{x}cosx$(-π≤x≤π,且x≠0)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).
(Ⅰ)求S1,S2及数列{Sn}的通项公式;
(Ⅱ)若数列{bn}满足${b_n}=\frac{{{{(-1)}^n}}}{S_n}$,且{bn}的前n项和为Tn,求证:当n≥2时,$\frac{1}{3}≤|{T_n}|≤\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=$\sqrt{x-1}$的定义域是(  )
A.(0,+∞)B.(1,+∞)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合U={1,2,3,4,5,6},A={1,2,3,5},B={3,5,6}.
(Ⅰ)求A∩B;
(Ⅱ)求(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=f(x)图象上不同两点M(x1,y1),N(x2,y2)处的切线的斜率分别是kM,kN,规定φ(M,N)=$\frac{|{k}_{M}-{k}_{N}|}{|MN|}$(|MN|为线段MN的长度)叫做曲线y=f(x)在点M与点N之间的“弯曲度”.设曲线f(x)=x3+2上不同两点M(x1,y1),N(x2,y2),且x1y1=1,则φ(M,N)的取值范围是(0,$\frac{3\sqrt{10}}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\frac{1}{e}•{e^x}+\frac{a}{2}{x^2}$-(a+1)x+a(a>0),其中e为自然对数的底数.若函数y=f(x)与y=f[f(x)]有相同的值域,则实数a的最大值为(  )
A.eB.2C.1D.$\frac{e}{2}$

查看答案和解析>>

同步练习册答案